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Summary

The concept of identifying codes was originally developed as a means of pin-
pointing a specific critical node in a network, given its relationship with a special
set of codeword nodes in a graph. Applications such as a fault diagnosis and
sensor networks have found identifying codes extremely useful. For example, a
network of smoke detectors with an accurate identifying code allows us to deter-
mine the exact location of a fire given only the set of detectors that have been
triggered. Unfortunately, the problem of finding identifying codes is extremely
computationally expensive, and so the real-world use so far has been minimal.
To deal with this problem, we propose the use of a special network structure -
de Bruijn networks.

When deploying a wireless network, some highly desirable properties are (a)
many short paths between any two nodes, and (b) relatively few edges. One type
of network structure that satisfies both of these properties simultaneously is the
class of de Bruijn networks. De Bruijn networks have been utilized in many
applications, such as fault tolerant networks, peer-to-peer networks, amongst
others. Because of their unique properties, many algorithms that are normally
time-consuming perform exceptionally well on de Bruijn networks. This class
of networks has yet to be considered from an identifying code perspective, and
a complete examination of the problem is needed, from both a theoretical and
algorithmic perspective, and our initial theoretical results have shown promise.

1
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Introduction

Consider a house with several different smoke detectors. In many cases, a fire
will trigger not just one smoke detector, but several. Based on a specific set of
detectors going off, can we accurately pinpoint the room in which there is a fire?
This is an example of an identifying code. Each smoke detector has a certain
radius that it covers, and some areas will be covered by more than one smoke
detector. If each area of the house has a different set of detectors covering it,
then the set of smoke detectors that go off completely determines where the fire
is. With respect to sensor networks, if we can find a minimal identifying code
for the network, then we can easily determine the location of the critical node.

In terms of graph theory, let G be an undirected graph. Let Bt(v) be the
ball of radius t around vertex v, i.e. the set of all vertices that are at distance at
most t from v. A code is a set of vertices called codewords. Given a code S, the
identifying set of a vertex v is IDS(v) = Bt(v)S. The code S is an identifying
code if every identifying set in the graph is unique, or for vertices u, v we have
u = v if and only if IDS(u) = IDS(v) [14].

While identifying codes have been considered for several specific types of
graphs, they have yet to be examined for de Bruijn graphs. De Bruijn graphs
have been useful in many applications. A de Bruijn graph of length n and
alphabet d has a vertex for every string of length n over the set {0, 1, . . . , d−1}.
An edge is drawn starting at vertex (u1, u2, u3, . . . , un) and ending at vertex
(v1, v2, v3, . . . , vn) whenever u2 = v1, u3 = v2, , un = vn−1. In other words,

(u2, u3, . . . , un) = (v1, v2, . . . , vn−1). We will refer to this graph as ~B(d, n).
Note that this definition produces a directed graph in which multiple edges and
loops are allowed.

2
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Definitions

3.1 General Graph Theory

Definition 3.1. The distance from vertex v to vertex u in a graph G is given
by d(u, v), and is defined as the length of the shortest path from u to v in G.
If G is a digraph, then we require this path to be a directed path. We define
d(u, u) = 0.

Definition 3.2. Two vertices u, v ∈ V (G) are adjacent if either d(u, v) = 1 or
d(v, u) = 1. We denote this u ∼ v.

Definition 3.3. Let v ∈ V (G). The open in-neighborhood of v is given
by N−(v) = {u ∈ V (G) | d(u, v) = 1}, and the closed in-neighborhood
is given by N−[v] = N−(v) ∪ {v}. The open out-neighborhood is given by
N+(v) = {u ∈ V (G) | d(v, u) = 1}, and the closed out-neighborhood of
vertex v is given by N+[v] = N+(v) ∪ {v}. In an undirected graph, an open
neighborhood of v is N(v) = {u ∈ V (G) | d(u, v) = 1} and the closed
neighborhood of v is N [v] = N(v) ∪ {v}.

Definition 3.4. The in-ball of radius t centered at vertex v is the set:
B−t (v) = {u ∈ V (G) | d(v, u) ≤ t}. and the out-ball of radius t centered at ver-
tex v is the set: B+

t (v) = {u ∈ V (G) | d(u, v) ≤ t}. In an undirected graph, the
ball of radius t centered at vertex v is the set Bt(v) = {u ∈ V (G) | d(v, u) ≤ t}.

Definition 3.5. Two vertices u, v ∈ V (G) are called t-twins if B−t (u) = B−t (v).
If the graph has no t-twins, then G is called t-twin-free. For an undirected
graph, we use the same definition with in-ball replaced with ball.

Definition 3.6. Given a subset S ⊂ V (G), the S t-identifying set for vertex
v is given by IDS(v) = B−t (v) ∩ S. For an undirected graph, we use the same
definition with t-in-ball replaced with t-ball.

3.2 Types of Identifying Sets

Definition 3.7. A t-dominating set is a set S ⊆ V (G) such that for all v ∈
V (G) we have B−t (v) ∩ S 6= ∅. This is equivalent to saying that

⋃
v∈S B

+
t (v) =

3
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V (G). For an undirected graph, we replace B−t (v) and B+
t (v) with Bt(v). The t-

domination number, denoted domt(G), is the minimum size of a t-dominating
set in G.

Definition 3.8. [1] A k-tuple dominating set of a graph is a subset S of
vertices such that every vertex is 1-dominated by at least k vertices in S. The k-
tuple domination number, denoted γ×k(G) is the minimum size of a k-tuple
dominating set in G.

Definition 3.9. A distinguishing set is a set S of vertices such that for all
pairs of vertices u, v ∈ V (G) we have either:

1. u ∈ S, or

2. v ∈ S, or

3. N(u) ∩ S 6= N(v) ∩ S.

Definition 3.10. A locating-dominating set is a set S of vertices such that
for all pairs of vertices u, v ∈ V (G) we have either:

1. u ∈ S, or

2. v ∈ S, or

3. B−t (u) ∩ S 6= B−t (v) ∩ S.

For an undirected graph, replace t-in-ball with t-ball.

Definition 3.11. A t-identifying code is a t-dominating set S ⊆ V (G) such
that for all pairs u, v ∈ V (G) we have IDS(u) 6= IDS(v). (Note that since S is a
t-dominating set, we are also requiring that IDS(x) 6= ∅ for all x ∈ V (G).) The
variable t is referred to as the radius of the identifying code. We denote the
size of a minimum identifying code by γID(G).

Some authors will allow a t-identifying code to admit at most one non-empty
identifying set. Unless otherwise specified, will require every identifying set to
be nonempty.

Definition 3.12. A k-robust t-identifying code is a t-identifying code S ⊆
V (G) such that removal of any set T ⊆ S with |T | ≤ k preserves the t-identifying
properties, i.e. S \ T is a t-identifying code.

Definition 3.13. [8] A directed resolving set is a set S so that for each
v ∈ V (G) there exist u1, u2 ∈ S so that d(v, u1) 6= d(v, u2). The directed
metric dimension is the minimum size of a directed resolving set.

Definition 3.14. [6] A determining set or fixing set is a set S so that the
only automorphism that fixes the vertices of S pointwise is the trivial automor-
phism.

4
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Note that an alternate definition for a determining set is a set S for which
whenever f, g ∈ Aut(G) so that f(s) = g(s) for all s ∈ S, then f(v) = g(v)
for all v ∈ V (G). That is, every automorphism is completely determined by its
action on a determining set.

In the above definitions, if t is omitted from the notation (i.e. identifying
code instead of t-identifying code), then it is assumed that t = 1. Note also that
these definitions have corresponding counterparts for undirected graphs.

3.3 Strings and the Directed de Bruijn Graph

We will be considering various types of vertex subsets on the class of directed
de Bruijn graphs. The following definitions will be useful in working with this
class of graphs. We will use the notation [x] = {1, 2, . . . , x}.

Definition 3.15. Let Ad = {0, 1, . . . , d−1} and let And be the set of all strings
of length n made up of letters of A. When d is clear from context we will use
A and An respectively.

Definition 3.16. The directed de Bruijn graph, denoted ~B(d, n), has ver-
tex set And . An edge from vertex x1x2 . . . xn to vertex y1y2 . . . yn exists if and
only if x2x3 . . . xn = y1y2 . . . yn−1.

Definition 3.17. The concatenation of two strings x = x1x2 . . . xi and
y = y1y2 . . . yk is given by x⊕ y = x1x2 . . . xiy1y2 . . . yk.

Definition 3.18. The concatenation of sets of strings S and T is given by
S ⊕ T = {x⊕ y | x ∈ S and y ∈ T}.

Definition 3.19. The prefix of a string x = x1x2 . . . xn is the substring
x1x2 . . . xn−1, denoted by x−.

Definition 3.20. The suffix of a string x = x1x2 . . . xn is is the substring
x2x3 . . . xn, denoted by x+.

Definition 3.21. When discussing substrings of a string x1x2 . . . xn, we will
use the notation x(a : b) to denote the substring xaxa+1 . . . xb.

Definition 3.22. If a string x = x1x2 . . . xn contains a constant substring
x(a, b) = zz . . . z, then we will denote the consecutive letters as zb−a, the con-
stant raised to the power denoting length. This will also be used for repeated
substrings, such as 0101 . . . 01 = (01)k.

Definition 3.23. Let w = w1 . . . wn ∈ And . Define w(t,m) = w
(t,m)
1 . . . w

(t,m)
n

such that:

w
(t,m)
i =

{
wt +m (mod d), if i = t;
wi, otherwise.

Definition 3.24. Let w = w1 . . . wn ∈ And and ` ∈ Z+ such that n ≥ 2`. Then
we say that w has period length ` if wi = wi+` for all i ∈ [n − `]. If we have
n < 2`, then we say that w has almost period length `.

5
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Definition 3.25. Let w ∈ And , and suppose that w has period length `, and
does not have period length k for any k < `. Then w is called `-periodic.

Definition 3.26. Let w ∈ And . If there exists some ` > n
2 and word w′ ∈ A2`−n

d

such that w ⊕ w′ is `-periodic, then w is called almost `-periodic.

We now provide some lemmas regarding string properties that will be used
later in the paper.

Lemma 3.27. [10] Let `1 > `2 and w be a word of length n ≥ `1+`2−gcd(`1, `2).
If w has periods (or almost periods) of length `1 and `2 , then w has a period of
length gcd(`1, `2).

Lemma 3.28. [4] Let `1 ≥ `2 and w be a word of length n ≥ `1 + `2. If w has
a period (or almost period) of length `1 and w(k,m) has a period of length `2 for
some m ∈ Ad, then there is m′ ∈ Ad such that w(k,m′) has a period of length
gcd(`1, `2).

Lemma 3.29. Let w ∈ And such that w is `1-periodic or almost `1-periodic. Let
m ∈ [d − 1] and also k ∈ [n] with k ≤ n − `1 or k > `1. Then for any `2 <

n
2

with `1 ≥ `2 and n ≥ `1 + `2, it is not possible that w(k,m) is `2-periodic.

Proof. We proceed by contradiction, and suppose that w(k,m) is `2-periodic. We
have two cases. First, if k > `1, then by Lemma 3.28, there exists some m′ ∈ Ad
such that w(k,m′) has period of length gcd(`1, `2). Then we have the following
chain of equalities.

wk = wk−`1 since w has a period of length `1
= wk−`2 since w(k,m′) has a period of length gcd(`1, `2)

= w
(k,m)
k since w(k,m) has a period of length `2

Hence this is a contradiction. For our second case, when k ≤ n − `1, we note
the following.

wk = wk+`1 = wk+`2 = w
(k,m)
k

This is also a contradiction. Therefore we must have that w(k,m) is not `2-
periodic.

Lemma 3.30. Let w ∈ And such that w has period length `1 for some `1 <
n
2 .

For all m ∈ [d − 1] and for all i, j, k ∈ [n] with i ≤ k ≤ j, and for all `2 ≤ `1
with j − i+ 1 ≥ `1 + `2 and with either k ≥ i+ `1 or k ≤ j − `1, we must have
that w(k,m)(i, j) does not have period `2.

Proof. Define w′ = w(i, j) and w′(k−i,m) = w(k,m)(i, j), and then apply Lemma
3.29 to compare the two strings.

Lemma 3.31. Let n = 2t and let u ∈ And . If u has period length t and for some
` < t and m ∈ Ad, we find that u′ = u(t,m)(t+ 1− ` : n− 1) is `-periodic, then
we must have that ` divides t and u′ ⊕ (un +m) has period `.

6
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Proof. First, we note that Um =
(
u(t,m)

)(n,m)
clearly has period length t, and so

Um(t+1−` : n−1) has almost period length t. Additionally, since Um(t+1−` :
n− 1) = u′, we know that Um(t+ 1− ` : n− 1) is `-periodic. Hence by Lemma
3.27, Um(t+ 1− ` : n− 1) has period of length p = gcd(t, `). However since u′

is given to be `-periodic, the minimum period length is ` and so we must have
that p = ` and thus ` divides t.

To show that u′ ⊕ (un +m) has period `, we note that u′ has period `, and

that u′` = u
(t,m)
t = ut + m. Having period ` implies that u′k = ut + m for all k

that is divisible by `. Since un +m is the (t+ `)th letter in u′ ⊕ (un +m), and
this is divisible by `, we need that un +m = ut +m in order for u′ ⊕ (un +m)
to have period `. But this is given to be true since u has period t.

The two following lemmas are useful in working with distances in ~B(d, n)
and their proofs are self-evident.

Lemma 3.32. In ~B(d, n) there is a directed path of length t ≤ n from x to y if
and only if x(t+ 1 : n) = y(1 : n− t). That is, if and only if the rightmost n− t
letters of x are the same as the leftmost n− t letters of y.

Lemma 3.33. In ~B(d, n) if vertices x 6= y have the same prefix, then for all

u 6= {x, y}, ~d(u, x) = ~d(u, y). In particular, B−t (x) \ {x} = B−t (y) \ {y} for all
t ≤ n.

7
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3.4 Examples
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3.5 de Bruijn Results

In this section, we list some general results concerning the de Bruijn graph that
were determined in our search for special vertex sets.

Lemma 3.34. The strings in Bt(x) for x = x1x2 . . . xn must be one of the
following three types.

1. x;

2. [d]g ⊕ xb−f+1 . . . xn−f ⊕ [d]b−g with b > f, b > g, f + b+ g ≤ t;

3. [d]f−c ⊕ yb+1 . . . yn−f+b ⊕ [d]c with f > b, f > c, b+ f + c ≤ t.

Proof. All strings in Bt(x) can be described by following forward or backward
edges. The strings of type (1) are reached by taking no moves. All other strings
(types (2) and (3)) are reached by taking either moves of type FBF (forward-
backward-forward) or BFB (backward-forward-backward). We will describe
shortest paths within these confines. We define f steps forward from vertex
x1x2 . . . xn as reaching vertices in the set:

[d]f ⊕ x1 . . . xn−f .
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We define b steps backward from vertex x1x2 . . . xn as reaching vertices in the
set :

xb+1 . . . xn ⊕ [d]b.

If FBF is the shortest path to reach some vertex y from x, then we must
follow f edges forward, b edges backward, and g edges forward, with the con-
straints that b > f , b > g, and f + b + g ≤ t. Following these sequences, we
arrive at strings of type (2).

If BFB is the shortest path to reach some vertex y from x, then we must
follow b edges backward, f edges forward, and c edges backward, with the
constraints that f > b, f > c, and b+ f + c ≤ t. Following these sequences, we
arrive at strings of type (3).

Lemma 3.35. For any y ∈ B(d, n) with d ≥ 3, there exists some vertex x such
that d(y, x) = n.

Proof. We proceed by induction on n and show that if the claim is true in
B(d, n) for n ≥ 2, then the claim is true for B(d, n+ 2).

Base Case: n = 2. Since d ≥ 3, our vertex y = y1y2 can use at most two sym-
bols from our alphabet. Suppose that z ∈ [d]\{y1, y2}. Then d(y, zz) = 2.

As our induction proceeds from string length n to n + 2, we require an
additional base case of n = 3. If our vertex y = y1y2y3 only uses two
distinct symbols from [d], then the string x = an where a ∈ [d]\{y1, y2, y3}
satisfies d(y, x) = 3. Otherwise, we must have [d] = {y1, y2, y3}. Then the
vertex x = (y2)3 satisfies d(y, x) = 3.

Induction Step: Let y = y0⊕y⊕yn+1 be arbitrary. By the induction hypoth-
esis, there exists some x ∈ B(d, n) such that d(x, y) = n. We will show
that d(y, x) = n + 2, where x = x0 ⊕ x ⊕ xn+1 with x0 ∈ [d] \ {yn, yn+1}
and xn+1 ∈ [d] \ {y0, y1}. We will show that x 6∈ Bn+1(y) using Lemma
3.34 and considering each type of path and resulting string individually.

1. x = y. Not possible since x 6= y.

2. FBF-type.

First, from Lemma 3.34, we know that since d(x, y) = n there cannot
exist any choice of f, b, g such that f + b + g ≤ n − 1, b > 0, b > f ,
and b > g such that

x ∈ [d]g ⊕ yb−f+1 . . . yn−f ⊕ [d]b−g.

In other words, we must have

yb−f+1 . . . yn−f 6= xg+1 . . . xg+n−b

for all such choices of f, b, g.

Now we will show that there does not exist an FBF-path of length
n+ 1 or less between x and y. Fix some f, b, g such that f + b+ g ≤

9
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n + 1, b > 0, b > f , and b > g. From Lemma 3.34 all vertices
z0z1 . . . zn+1 that can be reached by an FBF-path with parameters
(f, b, g) from y must have

yb−f . . . yn−f+1 = zg . . . zg+n+1−b.

(a) If f = 0, b = k, and g = 0, then we consider 1 ≤ k ≤ n − 1
and n ≤ k ≤ n + 1 separately. First, if 1 ≤ k ≤ n − 1, then
our induction hypothesis with parameters (0, k, 0) tells us that
x1 . . . xn−k 6= yk+1 . . . yn when we examine FBF-paths with pa-
rameters (0, k, 0) from y. Hence we cannot have x0 . . . xn−k+1 =
yk . . . yn+1, and so no such FBF-path exists between x and y.
Next, if n ≤ k ≤ n + 1, then since x0 6= yn, yn+1, we will never
have x0x1 = ynyn+1 or x0 = yn+1, and so again no such FBF-
path exists in B(d, n+ 2).

(b) If f ≥ 1, then we have b ≥ 2. In this case, in order for such
an FBF-path to exist from y to x we need xg . . . xg+n−b+1 =
yb−f . . . yn+1−f . However our induction hypothesis with parame-
ters (f−1, b−1, g) shows xg+1 . . . xg+n−b+1 6= yb−f+1 . . . yn−f+1,
and so no such FBF-path exists in B(d, n+ 2).

(c) If g ≥ 1, then again we must have b ≥ 2. In this case, in order
for such an FBF-path to exist we must have xg . . . xg+n−b+1 =
yb−f . . . yn+1−f . However our induction hypothesis with param-
eters (f, b− 1, g − 1) tells us that xg . . . xg+n−b 6= yb−f . . . yn−f ,
and so no such FBF-path exists in B(d, n+ 2).

Hence we cannot have an FBF-path of length less than n+2 between
y and x in B(d, n+ 2).

3. BFB-type.

First, from Lemma 3.34, we know that since d(x, y) = n there cannot
exist any choice of b, f, c such that b + f + c ≤ n − 1, f > 0, f > b,
and f > c such that

x ∈ [d]f−c ⊕ yb+1 . . . yn−f+b ⊕ [d]c.

In other words, we must have

yb+1 . . . yn−f+b 6= xf−c+1 . . . xn−c

for all such choices of b, f, c.

Now we will show that there does not exist a BFB-path of length n+1
or less between x and y. Fix some b, f, c such that b+ f + c ≤ n+ 1,
f > 0, f > b, and f > c. From Lemma 3.34 all vertices z0z1 . . . zn+1

that can be reached by a BFB path from y with these parameters
must have

yb . . . yn+1−f+b = zf−c . . . zn+1−c.

10
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Figure 1: B(2, 3) does not contain any vertices at distance 3 from 011.

(a) If b = 0, f = k, and c = 0, then we consider 1 ≤ k ≤ n − 1
and n ≤ k ≤ n + 1 separately. First, if 1 ≤ k ≤ n − 1, then our
induction hypothesis tells us that xk+1 . . . xn 6= y1 . . . yn−k when
we examine BFB-paths with parameters (0, k, 0) from y. Hence
we cannot have xk . . . xn+1 = y0 . . . yn−k+1 in B(d, n+ 2), so no
such BFB-path exists between x and y.
Next, if n ≤ k ≤ n + 1, then since xn+1 6= y0, y1, we will never
have xnxn+1 = y0y1 or xn+1 = y0, and so again no such BFB-
path exists in B(d, n+ 2).

(b) If b ≥ 1, then we have f ≥ 2. In this case, in order for such a
BFB-path to exist from x to y we must have xf−c . . . xn+1−c =
yb . . . yn+1−f+b. However our induction hypothesis with param-
eters (b − 1, f − 1, c) tells us that xf−c . . . xn−c 6= yb . . . yn−f+b,
and so no such BFB-path exists in B(d, n+ 2).

(c) If c ≥ 1, then we must have f ≥ 2. In this case, to have such
a BFB-path between x and y we must have xf−c . . . xn+1−c =
yb . . . yn+1−f+b. However our induction hypothesis with parame-
ters (b, f−1, c−1) shows xf−c+1 . . . xn−c+1 6= yb+1 . . . yn−f+1+b,
and so no such BFB-path exists in B(d, n+ 2).

Hence we cannot have a BFB-path of length less than n+ 2 between
y and x in B(d, n+ 2).

Therefore there is no path from y to x of length n+ 1 or smaller, and so
d(y, x) ≥ n+ 2. As it is well known that the de Bruijn graph B(d, n+ 2)
has diameter n+ 2 (see [2]), we must have d(y, x) = n+ 2.

In other words, Lemma 3.35 tells us the eccentricity of every node in the
graph B(d, n) is n for d ≥ 3, and so the radius of B(d, n) is n. Note that when
d = 2 this does not always hold. For example, the graph B(2, 3) does not have
any vertex at distance 3 from 011. See Figure 1.

11
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Results and Discussion

4.1 Dominating Set Bounds

First, we recall the definition of a dominating set in a graph.

Definition 4.36. A (directed) t-dominating set is a subset S ⊆ V (G) such
that for all v ∈ V (G) we have B−t (v) ∩ S 6= ∅. That is, S is a (directed)
t-dominating set if every vertex in G is within (directed) distance t of some
vertex in S. We denote the size of a minimum t-dominating set in a graph G
by γt(G).

Note that by definition every identifying code is also a dominating set, but
not conversely.

4.1.1 Directed de Bruijn Graphs

We begin with a review of the current literature and then proceed with our
results.

Theorem 4.37. [15] For d ≥ 2, n ≥ 1, γ1( ~B(d, n)) =
⌈
dn

d+1

⌉
.

In [15] a construction of a minimum dominating set for ~B(d, n) is given. Key
to this construction is the fact that every integer m corresponds to a string
(base d) in Znd , that we call Xm. The construction utilizes a special integer m
defined by:

m =

{
dn−2 + dn−4 + · · ·+ dn−2k + · · ·+ d2 + 1 mod dn, if n is even;
dn−2 + dn−4 + · · ·+ dn−2k + · · ·+ d3 + d mod dn, if n is odd.

Let D = {m,m + 1, . . . ,m + d d
n

d+1e − 1}. Now let S be the set of strings

{Xi | i ∈ D}. Then S is a minimum size dominating set for ~B(d, n).

Next we provide constructions for t-dominating sets. While others have
considered some variations of t-dominating sets (such as perfect dominating
sets in [18]), it does not appear that the general t-dominating sets have been
considered in the directed de Bruijn graph.

12
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Theorem 4.38. The set S ∪ {0n} where

S = {x ∈ And |xk(t+1) 6= 0 for some k ∈ Z+ and xi = 0 for all i < k(t+ 1)}

is a t-dominating set of size

1 + dn−t−1(d− 1)

(
1− d−(t+1)b n

t+1c

1− d−(t+1)

)

in ~B(d, n).

Proof. Let x be a vertex in And . Assume that there are k zeros at the beginning
of x, but not k + 1 zeros, i.e. x = 0n or x = 0k ⊕ a ⊕ x(k + 2 : n) for
some a 6= 0. Let l ∈ [0, t] be an integer so that k + l ≡ t (mod t + 1), i.e.
k + l = t+m(t+ 1) = (m+ 1)(t+ 1)− 1 for some m ≥ 0. Now

0l ⊕ x(1 : n− l) = 0l ⊕ 0k ⊕ a⊕ x(k + 2 : n− l) = 0k+l ⊕ a⊕ x(k + 2 : n− l)

belongs to S except if k+l ≥ n. If k+l ≥ n, then 0n−k⊕x(1 : k) = 0n ∈ S∪{0n}
dominates x. Therefore every vertex is dominated by S ∪ {0n}.

There are dn−k(t+1) · (d − 1) vertices which begin with exactly k(t + 1) − 1
zeros. Moreover, every vertex of S \{0n} begins at most n−1 zeros. This needs

that k(t+ 1) < n or 1 ≤ k ≤
⌊
n
t+1

⌋
. Finally, 0n is added to the dominating set

S ∪ {0n}. Therefore the size of S ∪ {0n} is

1 +

b n
t+1c∑
i=1

dn−i(t+1) · (d− 1)

= 1 + dn(d− 1)

b n
t+1c∑
i=1

(
d−t−1

)i
= 1 + dn(d− 1)

−1 +

b n
t+1c∑
i=0

(
d−t−1

)i
= 1 + dn(d− 1)

−1 +
1−

(
d−t−1

)b n
t+1c+1

1− d−(t+1)


= 1 + dn(d− 1)

d−(t+1) −
(
d−(t+1)

)b n
t+1c+1

1− d−(t+1)


= 1 + dn−t−1(d− 1)

(
1− d−(t+1)b n

t+1c

1− d−(t+1)

)
.
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This result gives us the following lower bound on the size of a t-dominating
set in ~B(d, n).

Theorem 4.39. Bounds on the size of a t-dominating set in ~B(d, n) are given
by:

γt( ~B(d, n)) ≥


1 + dn−t−1(d− 1)

(
1−d−(t+1)b n

t+1c
1−d−(t+1)

)
if n ≡ t (mod t+ 1)

dn−t−1(d− 1)

(
1−d−(t+1)b n

t+1c
1−d−(t+1)

)
otherwise.

Proof. Suppose that the set S′ is a t-dominating set in ~B(d, n). Choose a ∈
Ad\{0} and i ∈ Z so that i ≤ n

t+1 , and w ∈ An−i(t+1)
d . Let x = w⊕a⊕0i(t+1)−1.

We note that B−t (x) contains the following elements.

B−t (x) =
{
y | y = w′ ⊕ w ⊕ a⊕ 0i(t+1)−1−k for some k ∈ [0, t], w′ ∈ Akd

}
Note that for all v 6= x such that v = v′ ⊕ b ⊕ 0j(t+1)−1 with b ∈ [d −
1], j ≤ n

t+1 , and v′ ∈ An−j(t+1)
d , we must have that B−t (x) ∩ B−t (v) = ∅.

Hence each of these types of strings must dominated by a different element
of S′, and so we must have the following lower bound on |S′|. Define A ={
v | v = v′ ⊕ b⊕ 0j(t+1)−1 with b ∈ [d− 1], j ≤ n

t+1 , v
′ ∈ An−j(t+1)

d

}
.

|S′| ≥ |A|

=

b n
t+1 c∑
j=1

dn−j(t+1) · (d− 1)

= dn−t−1(d− 1)

(
1− d−(t+1)b n

t+1c

1− d−(t+1)

)
Finally, we consider the string 0n and note that

B−t (0n) = {z | z = z′ ⊕ 0n−s with z′ ∈ Asd, s ≤ t}.

When we compare B−t (0n) with B−t (x), we note that since a 6= 0 we must have
that the closest element of B−t (x) to 0n is x itself. Next we note that the string
closest to 0n in the set A will occur when j = b n

t+1c. This will give us the string
with the most 0’s packed at the right end. Finally, if n ≡ p mod t+ 1, then this
string looks like v′ ⊕ b⊕ 0n−p−1 with v′ ∈ Apd and b 6= 0. If p = t, then we are
still unable to reach 0n, and so we must have at least one additional string in
S′ to cover 0n.

4.1.2 Undirected de Bruijn Graphs

Lemma 4.40.

dom(B(d, n)) ≥

{
dn−1

2 , if d is even;
dn−1+1

2 , if d is odd.
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Figure 2: A directed resolving set in the graph ~B(2, 3) (black vertices).

Proof. Every vertex v ∈ V (B(d, n)) can cover at most 2d + 1 vertices. Since
there are dn vertices in the graph, this provides the following lower bound.

dom(B(d, n)) ≥
⌈

dn

2d+ 1

⌉
=

{
dn−1

2 , if d is even;
dn−1+1

2 , if d is odd.

4.2 Automorphisms, Resolving Sets, and Deter-
mining Sets

4.2.1 Resolving Sets

Definition 4.41. A directed resolving set is a set S such that for all
u, v ∈ V (G) there exist s ∈ S so that ~d(s, u) 6= ~d(s, v). The directed metric
dimension is the minimum size of a directed resolving set. An example of a
directed resolving set in ~B(2, 3) is given in Figure 2.

Note that this definition is not quite the same as that given in [8] (which

requires that there exist s ∈ S so that ~d(u, s) 6= ~d(v, s)). Our definition cor-
responds better to the definitions of domination and of identifying codes for
directed graphs that are used in this paper.

Theorem 4.42. The directed metric dimension for ~B(d, n) is dn−1(d− 1).

Proof. The following shows that for each w ∈ An−1 a directed resolving set for
~B(d, n) must contain (at least) all but one of the vertices with prefix w. Suppose
that w ∈ An−1, and i 6= j ∈ A so that neither of w ⊕ i, w ⊕ j is in our set S.
Note that if x, y ∈ V ( ~B(d, n)), with x 6= y, then the distance from x to y is
completely determined by x− (and y+). Since neither w ⊕ i nor w ⊕ j is in S,

and both have the same prefix, ~d(w ⊕ i, x) = ~d(w ⊕ j, x) for all x ∈ S. Thus S
is not a directed resolving set. Thus for every w ∈ An−1, S must contain (at
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Figure 3: A minimum size determining set for ~B(2, 3) (black vertex).

least) all but one of the strings w ⊕ j for j ∈ A. Thus |S| ≥ dn−1(d− 1). Since
{w⊕ 0 | w ∈ An−1} can easily be shown to be a directed resolving set, we have
the desired equality.

The combination of Theorem 4.54 and Theorem 4.2.1 yields:

Corollary 4.43. The directed metric dimension for ~B(d, n) is equal to the min-

imum size of a t-identifying code for ~B(d, n) if 2t ≤ n.

4.2.2 Automorphisms and Determining Sets

In this section we will use a determining set to help us illustrate the auto-
morphism group of ~B(d, 2), study the relationship between Aut( ~B(d, n−1)) and

Aut( ~B(d, n)) and use the result to find the determining number for each ~B(d, n).
First let’s recall some definitions.

Definition 4.44. An automorphism of a graph G is a permutation π of
the vertex set such that for all pairs of vertices u, v ∈ V (G), uv is an edge
between u and v if and only if π(u)π(v) is an edge between π(u) and π(v). An
automorphism of a directed graph G is a permutation π of the vertex set
such that for all pairs of vertices u, v ∈ V (G), uv is an edge from u to v if and
only if π(u)π(v) is an edge from π(u) to π(v). One automorphism in the binary
(directed or undirected) de Bruijn graph is a map that sends each string to its
complement.

Definition 4.45. [6] A determining set for G is a set S of vertices of G
with the property that the only automorphism that fixes S pointwise is the
trivial automorphism. The determining number of G, denoted Det(G) is the
minimum size of a determining set for G. See Figure 3 for an example.

Note that an alternate definition for a determining set is a set S with the
property that whenever f, g ∈ Aut(G) so that f(s) = g(s) for all s ∈ S, then
f(v) = g(v) for all v ∈ V (G). That is, every automorphism is completely
determined by its action on a determining set.

Notice that since for both directed resolving sets and for identifying codes,
since each vertex in a graph is uniquely identified by its relationship to the subset
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by properties preserved by automorphisms, the subset it also a determining set.
Thus every directed resolving set and every identifying code is a determining set.
However, though domination is preserved by automorphisms, vertices are not
necessarily uniquely identifiable by their relationship to a dominating set. Thus
a dominating set is not necessarily a determining set. However, the relationships
above mean that the size of a minimum determining set must be at most the size
of a minimum identifying code or the directed metric dimension. For de Bruijn
graphs we have shown that the latter numbers are rather large. Does this mean
that the determining number is also large. We will see in Corollary 4.49 that
the answer for directed de Bruijn graphs is a resounding ‘No’.

Lemma 4.46. S = {00, 11, 22, 33, . . . , (d − 1)(d − 1)} is a determining set for
~B(d, 2).

Proof. Suppose that σ ∈ Aut( ~B(d, 2)) fixes S pointwise. That is, σ(ii) = ii

for all i ∈ A. Choose ij 6= rs ∈ V ( ~B(d, 2)). Then either i 6= r or j 6= s (or

both). If i 6= r then ~d(ii, rs) = 2 which is distinct from ~d(ii, ij) = 1. Since an
automorphism of a directed graph must preserve directed distance, σ(ij) 6= rs

if i 6= r. If j 6= s, then ~d(rs, jj) = 2 which is distinct from ~d(ij, jj) = 1.
Thus, again using that σ preserves directed distance, σ(ij) 6= rs if j 6= s. Thus,

σ(ij) = ij for all ij ∈ V ( ~B(d, 2)) and therefore σ is the identity map and S is a
determining set.

Note that we are using directed distances both from and to elements of the
set S. Thus S does not fit the definition of a directed resolving set for ~B(d, 2) (by
[8], this would require that each vertex v ∈ V (G) be distinguished by it directed
distance to the vertices of the resolving set). However directed distances both to
and from a set can be used in determining automorphisms of a directed graph.

Lemma 4.47. Aut( ~B(d, 2)) ∼= Sym(Ad).

Proof. Let σ ∈ Sym(Ad). Define ϕσ on V ( ~B(d, n)) by applying σ to each vertex
coordinate-wise. That is ϕσ(ab) = σ(a)σ(b). It is easy to show that ϕσ preserves
directed edges and thus is an automorphism. Further, distinct permutations
in Sym(Ad) produce distinct automorphisms since they act differently on the
vertices of the determining set S defined above. Thus we have an injection
Sym(Ad) ↪→ Aut( ~B(d, 2)).

Since the vertices of S are precisely the vertices with loops, every automor-
phism of ~B(d, 2), must preserve S setwise. This provides the necessary injection

from Aut( ~B(d, 2)) ↪→ Sym(A). Thus, Aut( ~B(d, 2)) ∼= Sym(Ad).

Note that we can consider the automorphisms of ~B(d, 2) as permutations
of the loops, but we can simultaneously consider them as permutations of the
symbols in the alphabet Ad. It can be useful to view the automorphisms in
these two different ways.

Note that as shown in [1], ~B(d, n) can be built inductively from ~B(d, n−1) in

the following way. The vertex x1 . . . xn ∈ V ( ~B(d, n)) corresponds to the directed
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edge from x1 . . . xn−1 to x2 . . . xn in ~B(d, n−1). The directed edge ~B(d, n) from
x1 . . . xn → x2 . . . xnxn+1 corresponds to the directed 2-path x1 . . . xn−1 →
x2 . . . xn → x3 . . . xn+1 in ~B(d, n − 1). That is, ~B(d, n) is the directed line

graph of the directed graph ~B(d, n−1). Thus, by [13] (Chapter 27, Section 1.1),

Aut( ~B(d, n− 1)) = Aut( ~B(d, n)) ∼= Sym(A). In the following paragraphs we see
detail this correspondence.

Suppose that ϕ ∈ Aut( ~B(d, n)). Since ϕ preserves directed edges, we know
that both ϕ(x1 . . . xn) = a1 . . . an and ϕ(x2 . . . xn+1) = b1 . . . bn if and only
if a2 = b1, . . . , an = bn−1. Thus if ϕ(x1 . . . xn−1xn) = a1 . . . an−1an then for
every b ∈ A, ϕ(x1 . . . xn−1z) = a1 . . . an−1c for some c ∈ A. In particular, this

allow us to define an automorphism ϕ′ ∈ Aut( ~B(d, n− 1)) corresponding to ϕ ∈
Aut( ~B(d, n)). Define ϕ′ by ϕ′(x1 . . . xn−1) = a1 . . . an−1 where ϕ(x1 . . . xn) =
a1 . . . an−1. By the preceding discussion, ϕ′ is well-defined. It is also clearly a

bijection on vertices of ~B(d, n− 1). Consider x1 . . . xn−1 and x2 . . . xn−1xn, the

initial and terminal vertices of a directed edge in ~B(d, n− 1). Since ϕ preserves
directed edges if ϕ(x1 . . . xn) = a1 . . . an−1an then for any z ∈ A, ϕ(x2 . . . xnz) =
a2 . . . anw for some w ∈ A. By definition of ϕ′,ϕ′(x1, . . . xn−1) = a1 . . . an−1

and ϕ′(x2 . . . xn) = a2 . . . an. Thus ϕ′ preserves the directed edge. Thus we get

Aut( ~B(d, n)) ↪→ Aut( ~B(d, n− 1)).

In the other direction, suppose we are given ϕ′ ∈ Aut( ~B(d, n − 1)). Since

ϕ′ preserves directed edges, and directed edges of ~B(d, n − 1) are precisely the

vertices of ~B(d, n), ϕ′ defines a map on vertices of ~B(d, n). That is, (with some
abuse of notation)

ϕ(x1 . . . xn) = ϕ(x1 . . . xn−1 → x2 . . . xn)

= ϕ′(x1 . . . xn−1 → x2 . . . xn)

= ϕ′(x1 . . . xn−1)→ ϕ′(x2 . . . xn).

Thus, given ϕ′(x1 . . . xn−1) = a1 . . . an−1 then ϕ′(x2 . . . xn) = a2 . . . an for some
an ∈ A and we define ϕ(x1 . . . xn) = a1 . . . an. Further, since ϕ′ preserves
directed 2-paths, ϕ preserves directed edges. Thus we get

Aut( ~B(d, n− 1)) ↪→ Aut( ~B(d, n)).

Since the automorphisms of ~B(d, 2) are permutations of the loops, and of

the symbols of A, by induction, so are the automorphisms of ~B(d, n) for all n.
Thus we have proved the following.

Theorem 4.48. Aut( ~B(d, n)) ∼= Sym(Ad) for all n ≥ 2.

Corollary 4.49. Det( ~B(d, n)) =
⌈
d−1
n

⌉
.

Proof. Let S be a minimum set of vertices in which each letter of Ad−1 occurs at
least once. It is easy to see that |S| =

⌈
d−1
n

⌉
. Any permutation of Ad that acts

nontrivially on any letter of Ad must act non-trivially on any string containing
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that letter. Thus if σ ∈ PtStab(S), then σ must fix every letter contained in any
string in S. Thus σ fixes 0, 1, . . . , d − 1 and therefore also d. We can conclude
that σ is the identity in both Sym(Ad) and in Aut( ~B(d, n) and therefore S is a

determining set. Thus Det( ~B(d, n)) ≤
⌈
d−1
n

⌉
.

Further if |S| <
⌈
d−1
n

⌉
then fewer than d−1 letters of Ad are used in strings

in S. If a, b ∈ Ad are not represented in S, then the transposition (a b) in

Sym(Ad) is a non-trivial automorphism of ~B(d, n) that fixes S pointwise. Thus
S is not a determining set.

Thus for directed de Bruijn graphs, the determining number and the directed
metric dimension can be vastly different in size.

4.3 Identifying Codes

We have a few general results that hold true for any graph. The first result will
be used frequently in proving the existence of t-identifying codes in a graph.

Definition 4.50. Two vertices u, v ∈ V (G) are called t-twins wheneverB−t (u) =
B−t (v). If the graph has no t-twins, then G is called t-twin-free.

Theorem 4.51 ([7]). For a given graph G and integer t, G has a t-identifying
code if and only if it is t-twin-free.

Next, we prove some inductive relationships that exist with identifying codes
that are useful.

Theorem 4.52. If G is t-identifiable, then it is also (t− 1)-identifiable.

We will prove this result using the converse of the following lemma.

Lemma 4.53. Suppose that {x, y} are t-twins in G. Then we must also have
that {x, y} are (t+ 1)-twins.

Proof. First, we note that if {x, y} are t-twins, then d(x, y) ≤ t, so x and y
must be in the same component C of G. If Bt(x) = Bt(y) = C, then clearly
x and y are (t + 1)-twins, as there are no vertices z such that d(x, z) = t + 1
or d(y, z) = t + 1. However, if Bt(x) ( C, then there exists some β ∈ C
such that d(x, β) = t + 1. We know that β must have some neighbor α such
that d(x, α) = t. Note that since d(x, β) > t and Bt(x) = Bt(y), we also
must have d(y, β) > t and d(y, α) ≤ t. Since d(α, β) = 1, this implies that
d(y, β) = t + 1 and hence we have β ∈ Bt+1(y). Since β was arbitrary, this
implies that Bt+1(x) ⊆ Bt+1(y). The same argument follows with x and y
reversed to show that Bt+1(y) ⊆ Bt+1(x), and hence Bt+1(x) = Bt+1(y) and
we have that {x, y} are (t+ 1)-twins in G.

We note that in the literature others have considered various classes of
graphs, such as interval graphs and permutations graphs [12], however the vast
majority of these results do not pertain to de Bruijn networks in particular.
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While these classes of graphs do not contain the class of de Bruijn graphs, the
class of undirected line graphs is considered in [11]. Due to the recursive nature
of the de Bruijn graphs, it is clear that they are indeed line graphs, and these
results will be discussed further in Section 4.3.2.

4.3.1 Directed de Bruijn Graphs

We begin by considering directed de Bruijn graphs. Similar to the results found
for dominating sets, the directed graphs have much simpler and obvious identi-
fying code constructions.

Theorem 4.54. If ~B(d, n) is a t-identifiable graph, then the size of any t-
identifying code is at least dn−1(d− 1).

Proof. Choose t ≤ n and a 6= b in A. Suppose that for some w ∈ An−1, neither
x = w⊕a nor y = w⊕b is a set S. Since x and y share a prefix, by Lemma 3.33,
B−t (x) \ {x} = B−t (y) \ {y}. Since neither x nor y is in S, IDS(x) = IDS(y).
Thus S is not a t-identifying code. Thus for each w ∈ An−1, a t-identifying
code must contain, at least, all but one of w⊕ a for a ∈ A. Thus a t-identifying
code for ~B(d, n) must have size at least dn−1(d− 1).

Note that the result above is independent of the radius t. An interesting con-
sequence of this is the fact that increasing the radius of our identifying code does
not produce any decrease in the size of a minimum identifying code. For exam-
ple, consider the potential application of identifying codes in sensor networks.
One might think that by increasing the sensing power (which corresponds to the
radius of the identifying code) we would be able to place fewer sensors and thus
incur a savings overall. However, Theorem 4.54 implies that providing more
powerful (and thus more expensive) sensors does not allow us to place fewer
sensors. Thus we should use sensors that have sensing distance equivalent to
radius one. In fact, in the case of 2-identifying codes in ~B(2, 3), we actually
require an extra vertex for a minimum size of seven!

The remainder of this section is organized as follows. We first provide a
construction of an optimal t-identifying code for ~B(d, n) with t ≥ 2, and n ≥ 2t
in Theorems 4.55 and 4.56. Following the proof of this result, we highlight some
variations that provide identifying codes for several other instances. Finally, we
highlight an alternative construction for 1-identifying codes for all ~B(d, n) when
d 6= 2 and n is odd.

Theorem 4.55. Suppose that n ≥ 5, d ≥ 2, t ≥ 2, and n ≥ 2t. Then the
following set S is an optimal t-identifying code of size dn−1(d− 1) in ~B(d, n).

S =
{
x ∈ And | for some m and ` ≤ t, x(t,m)(t+ 1− ` : n− 1) is `-periodic,

but x(t,m)(t+ 1− ` : n− 1)⊕ (xn +m) is not.
}

∪{
x ∈ And | xt 6= xn and x(t,m)(t+ 1− ` : n− 1)

is not `-periodic for any m and ` ≤ t}
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Proof. First, let us note that for all x ∈ And , if x(t,m)(t+ 1− ` : n) has period `
for any m and ` ≤ t, then x 6∈ S.

Let x be given, and define xi to be the ith coordinate of x. We also define
the following string xij .

xij(k) =

 i, if k = t;
j, if k = n;
x(k), otherwise.

In other words, xij is the string x1 . . . xt−1ixt+1 . . . xn−1j.
Next, we note that xij(t+ 1− ` : n− 1) = x(t,i−xt)(t+ 1− ` : n− 1), which

implies by Lemma 3.30 that xij(t + 1− ` : n − 1) is `-periodic for at most one
` ≤ t = n

2 and for at most one i ∈ Ad.
Next, suppose that xab(t+ 1− ` : n) is `-periodic and consider xij . We note

that x
(t,a−i)
ij (t+ 1− ` : n− 1) = xab(t+ 1− ` : n− 1), which is `-periodic. Hence

xij is a member of S if and only if x
(t,a−i)
ij (t1 − ` : n − 1) ⊕ (j + a − i) is not

`-periodic. In other words, if and only if i − j 6≡ a − b mod d. On the other
hand, if xij(t+ 1− ` : n− 1) is not `-periodic for any ` and i ∈ Ad, then xij ∈ S
if and only if i 6= j. Hence, there is exactly one j ∈ Ad such that xaj 6∈ S,
and similarly there is exactly one i ∈ Ad such that xib 6∈ S. These pairings tell
us that dn−1 strings are not in S, leaving the cardinality of S at dn − dn−1, or
dn−1(d− 1).

Now that we have established the cardinality of S, we must show that no
two nodes have the same identifying sets. Let x, y ∈ ~B(d, n), and consider their
identifying sets, called I(x) and I(y), respectively. Let k be the smallest index
such that xk 6= yk.

k = 1: Without loss of generality, we may assume that x1 = 0 and y1 = 1.
Observe that we have the following strings contained in the identifying
sets.

x′ = 0t−1 ⊕ 0⊕ x(1 : n− t) ∈ B−t (x),
x′′ = 0t−1 ⊕ 1⊕ x(1 : n− t) ∈ B−t (x),
y′ = 1t−1 ⊕ 1⊕ y(1 : n− t) ∈ B−t (y), and
y′′ = 1t−1 ⊕ 0⊕ y(1 : n− t) ∈ B−t (y).

Note that x′ 6∈ B−t (y) and y′ 6∈ B−t (x), since B−t (x) does not contain
any vertices beginning with 1t+1 and B−t (y) does not contain any vertices
beginning with 0t+1. Next, we notice that at least one {x′, x′′} is in S.
To see this, we note that x′′ = x′(t,1). By the same point, we must have
that at least one of y′, y′′ is a member of S.

Next, we note that if at least one of x′, y′ is a member of S, we can
use that string to separate y. Otherwise, if either x′′ 6∈ B−t (y) ∩ S or
y′′ 6∈ B−t (x) ∩ S, we can separate x and y with the given string. As a
last resort, we consider the case in which we have x′′ ∈ B−t (y) ∩ S and
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y′′ ∈ B−t (x) ∩ S. Then we must have:

x′′ = 0t−1 ⊕ y(1 : n− t+ 1),

y′′ = 1t−1 ⊕ x(1 : n− t+ 1),

as x′′t is the only 1 in x′′(1 : t + 1) and y′′t is the only 0 in y′′(1 : t + 1).
From this, we get the following string equalities:

x(1 : n− t) = y(2 : n− t+ 1),

y(1 : n− t) = x(2 : n− t+ 1).

From these string equalities, we see that xi = yi+1 = xi+2 and yi =
xi+1 = yi+2 for all i = 1, 2, ..., n− t− 1, and so x(1 : n− t) and y(1 : n− t)
are both 2-periodic (since x1 6= y1 we cannot have 1-periodic). Hence,
x′′(t − 1 : n) = 0 ⊕ 1 ⊕ x(1 : n − t) is also 2-periodic (recall that x1 = 0
and y1 = 1), so x′′ 6∈ S. Hence we must have x′ ∈ S, and so we may use
x′ to separate x and y.

2 ≤ k ≤ n− t: We know that there must exist some s such that x1 . . . xs−1 =
y1 . . . ys−1, and these substrings are constant. Without loss of generality
we may assume that x1 . . . xs−1 = 0s−1 = y1 . . . ys−1 and xs = 1, and so
2 ≤ s ≤ k. Define the following strings.

y′ = 1t ⊕ y(1 : n− t) and

y′′ = 1t−1 ⊕ 0⊕ y(1 : n− t)

As we saw in the previous case, we have that {y′, y′′} ⊆ B−t (y) and
{y′, y′′} ∩ S 6= ∅. Now consider an arbitrary vertex v ∈ B−t (x). Since
xs−1xs = 01 and 2 ≤ s ≤ k ≤ n − t, we know that v(i − 1 : i) = 01 for
some i ∈ [s, s+ t].

Additionally, we consider y′ and i ∈ [2, s+ t− 1]. For i ≤ t, we know that
y′(i − 1 : i) = 11, and for i = t + 1, we have that y′(i − 1 : i) = 10, and
finally for t + 2 ≤ i ≤ s + t − 1 we have y′(i − 1 : i) = 00. Similarly, for
i ∈ [2, s + t − 1], we must have y′′(i − 1 : i) ∈ {00, 10, 11}. This implies
that y′(1 : s+ t− 1) and y′′(1 : s+ t− 1) do not contain the substring 01,
and so if y′ or y′′ is a member of B−t (x), we must have either d(y′, x) = t
or d(y′′, x) = t, respectively. Hence we must have y′t+i = xi or y′′t+i = xi
for i ∈ [1, n − t], and therefore that xk = y′t+k = y′′t+k = yk, which is a

contradiction. Thus neither y′ nor y′′ can be a member of B−t (x), and
hence both strings separate x and y.

k > n− t: Since we must have x1 = y1, we may assume without loss of gener-
ality that x1 = y1 6= 0. Define the following strings.

u = 0n−k ⊕ x(1 : k) and

v = 0n−k ⊕ y(1 : k)
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Clearly we have u ∈ B−t (x) and v ∈ B−t (y). Additionally, we have u(1 :
n− 1) = v(1 : n− 1) and un = xk 6= yk = vn. Note that this implies that
for a = xt−n+k we have u = ua,xk

and v = ua,yk with xk 6= yk. By our
argument at the very beginning of the proof, at most one of these can lie
outside of S, and so we must have {u, v} ∩ S 6= ∅.
We now have two cases. First, if both u 6∈ B−t (y) and v 6∈ B−t (x), then
any string from {u, v}∩S separates x and y, and we are done. Otherwise,
assume without loss of generality that u ∈ B−t (y). Then we must have
u = w ⊕ y(1 : p) for at least one p ∈ [n − t, n]. Take p to be the largest
such p possible. Since y1 6= 0 = ui for all i ∈ [1, n − k], we must have
p ≤ k. Additionally, if p = k then we have y(1 : k) = y(1 : p) = x(1 : k),
which is a contradiction since yk 6= xk. This implies that we must have
p < k. Hence we must have the following string of equalities:

0n−k ⊕ x(1 : k) = u

= w ⊕ y(1 : p)

= w ⊕ x(1 : p).

Thus we have x(k−p+1 : k) = x(1 : p), or xi = xk−p+i for i = 1, 2, . . . , p.
Additionally we note the following equalities hold:

2(k − p) = 2k − 2p

≤ 2k − 2(n− t)
≤ k + 2t− n
≤ k.

Hence since xi = xk−p+i for i ∈ [1, p] and 2(k − p) ≤ k, we know that
x(1 : k) has period (k − p). In fact, since we chose p to be maximum,
x(1 : k) is (k − p)-periodic.

Next, we show that u(t + 1 − (k − p) : n) is also (k − p)-periodic. First,
we note the following inequalities:

n− (t+ 1− (k − p)) + 1 = n− t+ k − p
≥ 2(k − p).

The last line comes from the facts: n− t ≥ t ≥ n− p ≥ k − p. Hence our
string length is at least 2(k − p), and from our previous paragraphs, so
long as u(t + 1 − (k − p) : n) is contained in u(n − k + 1 : n) = x(1 : k),
we know that it must have period (k − p). For this we note that

t+ 1− (k − p) ≥ (n− p) + 1− (k − p) = n− k + 1,

and so u(t + 1 − (k − p) : n) indeed has period (k − p), and thus u 6∈ S,
except if (n− 1)− (t+ 1− (k − p)) + 1 < 2(k − p). In this case we must
have k − p = t, k = n = 2t, and p = t.
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If u(t,m)(t+ 1− ` : n− 1) is `-periodic for some ` < k− p = t and m, then
by Lemma 3.31 we must have that u(t,m)(t+1−` : n−1)⊕(un+m) is also
`-periodic, and hence u 6∈ S. On the other hand, if u(t,m)(t+ 1− ` : n− 1)
is not `-periodic for any ` < t and m, then we note that un = u2t = ut, so
again u 6∈ S. Therefore in all cases we have u 6∈ S, so we must have v ∈ S.

All that remains is to show that v 6∈ B−t (x). We note that if v ∈ B−t (x),
then y(1 : k) is `-periodic for some ` ≤ k+ t−n (using the same argument
as we used to show that x(1 : k) was (k − p)-periodic). Since x(1 : k) =

(y(1 : k))
(k,m)

for some m, by Lemma 3.29 it is not possible that both
x(1 : k) and y(1 : k) are periodic. Hence we must have v 6∈ B−t (x), and so
we may use v to separate x and y.

When we combine the previous theorem with the following result, we have
a complete set of constructions for optimal t-identifying codes in ~B(d, n) with
t ≥ 2 and n ≥ 2t.

Theorem 4.56. Let n > 3 and S = And \ {x1ax3x4 . . . xn−1a | a ∈ Ad}. If

n is even, then S is a 2-identifying code for ~B(d, n). If n is odd, then S′ =

(S ∪ {(ab)n−1
2 b | a 6= b ∈ A2}) \ {(ab)

n−1
2 a | a 6= b ∈ A2} is a 2-identifying

code for ~B(d, n). In both these cases, the 2-identifying code is of optimal size
dn−1(d− 1).

Proof. Consider an arbitrary string x = x1x2x3 . . . xn ∈ And , and define the set
T = IDS(x). We’ll consider the contents of T in four cases based on the equality
of x1, xn−1 and of x2, xn. First let C = {ax−− | a ∈ A \ {xn−2}}.

Case 1. If x2 = xn and x1 = xn−1, then T = A⊕ C. Thus |T | = d2 − d.

Case 2. If x2 6= xn and x1 = xn−1, then T = (A⊕ C) ∪ {x}. If x ∈ A⊕ C
then x+ = ax−− for some a ∈ A \ {xn−2}. In this case,we have x2x3 · · ·xn =
ax1x2 · · ·xn−2. This implies that we have x1 = x3 = x5 = · · · , and also that
x2 = x4 = x6 = · · · . Since this case requires that x1 = xn−1, we must have
that either n is even or that x1 = x2 = x3 = · · · = xn. In either case, this
contradicts our assumption that x2 6= xn. Thus x 6∈ A ⊕ C, and we conclude
that |T | = d2 − d+ 1.

Case 3. If x2 = xn and x1 6= xn−1, then T = A⊕{C∪{x−}}. If x− = ax−−

for some a ∈ A\{xn−2}, then ax1x2 · · ·xn−2 = x1x2 · · ·xn−1. This implies that
we have x1 = x2 = x3 = · · · = xn−2 = xn−1. This contradicts our assumption
that x1 6= xn−1. Thus x− 6= ax−− for any a ∈ A \ {xn−2}, and we conclude
that |T | = d2.

Case 4. If x2 6= xn and x1 6= xn−1, then T = (A⊕ {C ∪ {x−}}) ∪ {x}. As
in Case 3, since x1 6= xn−1,A⊕ {C ∪ {x−}} contains d2 distinct elements. Let
us consider whether x ∈ A ⊕ {C ∪ {x−}}. If not, then |T | = d2 + 1. There are
two cases to consider.
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a. If x ∈ A ⊕ C, then x+ = x−. In this case, we must have that
x2x3x4 · · ·xn = x1x2 · · ·xn−1, which implies that we have the following chain of
equalities: x1 = x2 = x3 = · · · = xn−1 = xn. This contradicts the assumptions
that x2 6= xn and x1 6= xn−1. Thus, this case does not occur.

b. If x ∈ A⊕{x−}, then x+ = ax−− for some a ∈ A. Then x2x3 · · ·xn =
ax1x2 · · ·xn−2. This implies that x1 = x3 = x5 = · · · , and also that x2 =
x4 = x6 = · · · . If n is even, this contradicts our assumptions that x2 6= xn and
x1 6= xn−1. Thus for even n, this case does not occur. For n odd, this case only

occurs if x ∈ {(ab)n−1
2 a}.

Thus, if n is even, or n is odd and x 6∈ {(ab)n−1
2 a}, we can see that T =

IDS(x) completely determines the string x. In particular, given T we can decide
which case we are in based on |T |. We can then determine x1, . . . , xn based on
the content of T . Thus in these cases S is an identifying code.

However, if n is odd, and x ∈ {(ab)n−1
2 a} we must change S to get an

identifying code. Note that B−2 ((ab)
n−1
2 a) ∪ {(ab)n−1

2 b} = B−2 ((ab)
n−1
2 b). Since

our set S contains vertices of the form (ab)
n−1
2 a but not (ab)

n−1
2 b, these two

types of vertices must have identical identifying sets with respect to S. Thus by

adding the vertices in {(ab)n−1
2 b}, we are able to create distinct identifying sets

with respect to S∪{(ab)n−1
2 b}. However, we note that we now have the vertices

of {(ab)n−1
2 b} and {(ab)n−1

2 a} in our identifying code, but that B+
2 ((ab)

n−1
2 a)∪

{b(ba)
n−1
2 } = B+

2 (b(ba)
n−1
2 ). This implies that the inclusion of both (ab)

n−1
2 b

and (ab)
n−1
2 a in our identifying code is only necessary if they are required to

identify vertex (ab)
n−1
2 a from vertex b(ba)

n−1
2 . So, as long as we can identify

(ab)
n−1
2 a differently from b(ba)

n−1
2 without using b(ba)

n−1
2 , we need only include

(ab)
n−1
2 b and not (ab)

n−1
2 a in our identifying code. Since these two vertices have

disjoint in-balls of radius 2 for n > 3, they must have distinct 2-identifying sets.
Thus S′ is a 2-identifying code in this case.

Finally, we provide additional constructions of identifying codes. Theorems
4.57 and 4.58 have proofs very similar to that of Theorem 4.55, so we omit them
here.

Theorem 4.57. Assume that d ≥ 2, and n ≥ 3. Then the following subset S
is an optimal 1-identifying code of size dn−1(d− 1) in ~B(d, n).

S =
{
x ∈ And | for some m and ` ∈ {1, 2}, x(1,m)(1 : n− 1) is `-periodic or

almost `-periodic, but x(1,m)(1 : n− 1)⊕ (xn +m) is not.
}

∪{
x ∈ And | x1 6= xn and x(1,m)(1 : n− 1)

is not `-periodic for any m and ` ∈ {1, 2}}
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Theorem 4.58. Assume that d ≥ 2. Then the following subset S is a t-
identifying code of size dn−1(d− 1) + dt in the directed de Bruijn graph ~B(d, n),
if n = 2t− 1 ≥ 5.

S ={x ∈ And | for some m and l < t− 1: x(t,m)(t+ 1− l : n− 1) is l-periodic,

but x(t,m)(t+ 1− l : n− 1)⊕ (xn +m) is not.}
∪{

x ∈ And |xt 6= xn and x(t,m)(t+ 1− l : n− 1) is not l-periodic

for any m and l < t− 1.}
∪

{x ∈ And |x(t,m)(1 : n− 1) is almost t-periodic, for some m.}

We note that the construction in Theorem 4.58 is not optimal. To find an
optimal t-identifying code when n = 2t− 1 is an open problem to be considered
in the future. For the cases when n < 2t− 1, we have the following theorem.

Theorem 4.59. There is no t-identifying code in the directed de Bruijn graph
~B(d, n) when n ≤ 2t− 2.

Proof. Let u = 0n−t ⊕ 1⊕ 0t−2 ⊕ 1 and v = 0n−t ⊕ 1⊕ 0t−2 ⊕ 0. Since B−t (u)
and B−t (v) contain all vertices that end with 0n−t or 0n−t ⊕ 1 ⊕ 0k where

k = 0, 1, . . . , n − t − 1, u and v are t-twins. Thus
−→
B (d, n) has no t-identifying

code.

As an additional treat for the reader, we provide a simple construction for
1-identifying codes in ~B(d, n) whenever we have either d > 2 or n odd.

Theorem 4.60. If n is odd, or n is even and d > 2, then

S = And \ {a⊕An−2
d ⊕ a | a ∈ Ad}

is an identifying code for ~B(d, n). Further this identifying code has optimal size
(d− 1)dn−1.

Proof. Define S as in the statement of the theorem. First, we will see that the
identifying set for every vertex has size either d or d − 1. Let x = x1x2 . . . xn,
then

N−(x) ∩ S = {A ⊕ x1x2 . . . xn−1} \ {xn−1x1x2 . . . xn−1}.

If x1 = xn, then IDS(x) = N−(x) ∩ S has size d − 1. Whereas, if x1 6= xn,
then IDS(x) = {x} ∪N−(x) ∩ S has size d.

From this it is clear that every vertex has a non-empty identifying set. How-
ever we must also show that every identifying set is unique. Suppose there are
two distinct vertices x, y ∈ V ( ~B(d, n)) such that IDS(x) = IDS(y). Call their
identical identifying set T . We look at the two cases, |T | = d and |T | = d − 1,
separately below.
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Suppose that |T | = d. Then {x, y} ⊆ T by our assumption on T and our

earlier reasoning. Since x 6= y, this means that ~B(d, n) contains both directed
arcs x → y and y → x. This allows us to conclude that {x, y} = {(ab)k, (ba)k}
for some distinct a, b ∈ A with k = n/2. In particular we must have n even.
Below are the precise identifying sets for x and y.

IDS((ab)k) = {(ab)k, (ba)k} ∪ {c(ab)k−1a | c ∈ A \ {a, b}}
IDS((ba)k) = {(ab)k, (ba)k} ∪ {c(ba)k−1b | c ∈ A \ {a, b}}

If d > 2 these two identifying sets are in fact different, which is a contradic-
tion.

Suppose that |T | = d−1. Then neither x nor y is in T , which means neither is
in S. However since their identifying sets are identical, this means that they have
identical first neighborhoods. By definition of first neighborhoods, this means
that x and y have the same prefix but different final letters. By then definition
of S, one of x, y (if not both) is a member of S, which is a contradiction.

4.3.2 Undirected de Bruijn Graphs

General Results

We now consider the general undirected de Bruijn graph. Our first result proves
the existence of t-identifying codes in B(d, n) for d ≥ 3 and relatively large n
(with respect to t).

Theorem 4.61. B(d, n) is t-identifiable for d ≥ 3 and n ≥ 2t.

To prove this theorem, we will first prove the following lemma, which relies
heavily on Lemma 3.34.

Lemma 4.62. For n ≥ 2t, the number of distinct t-prefixes in Bt(y) \ [d]t ⊕
y1y2 . . . yn−t is at most

1− dbt/2c + 2 ·
t−1∑
j=0

dj .

Proof. Following Lemma 3.34, the t-prefixes in Bt(y) take one of the following
three forms (matching the types in Lemma 3.34).

1. y1y2 . . . yt;

2. [d]g ⊕ yb−f+1 . . . yt+b−f−g;

3. [d]f−c ⊕ yb+1 . . . yt+b+c−f .

In order to more easily count these t-prefixes, we will sort them by the last
letter that appears, and then sort them from longest [d]i prefix to smallest.
Since the largest [d]i prefix also counts the strings with smaller [d]j prefix so
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long as the strings end in the same letter, this will allow us to count unique
prefixes. We begin by rewriting the types of prefixes so as to more easily do
this.

1. y1y2 . . . yt;

2. We find this range of y-subsequences by noticing the following:

min(b− f) = (g + 1)− (t− 2g − 1)

= 3g + 2− t, and

max(b− f) = max(g + 1, t− g)

= t− g.

Hence for 0 ≤ g ≤ t−1
2 :

[d]
g ⊕ y3g+2−t+1 . . . y2g+2

...

[d]
g ⊕ yt−g+1 . . . y2t−2g

Last letters: yi such that 2g + 2 ≤ i ≤ 2t− 2g.

Range: yi is a last letter whenever t+ 1 ≤ i ≤ 2t.

Max g for each i: b 2t−i
2 c.

3. Note that in this case, we can cover all cases with c > 0 by a different case
with c = 0, so we may just consider the cases c = 0 to simplify things.

(a) For 0 ≤ f ≤ t+1
2 :

[d]
f ⊕ y1 . . . yt−f

...

[d]
f ⊕ yf . . . yt−1

Last letters: y t−1
2
, . . . , yt−1.

Range: yi is a last letter whenever t− f ≤ i ≤ t− 1.

Max f for each i: t+1
2 .

(b) For t+1
2 < f < t (recall we eliminated f = t):

[d]
f ⊕ y1 . . . yt−f

...

[d]
f ⊕ yt−f+1 . . . y2t−2f

Last letters: y1, y2, . . . , yt−2.

Range: yi is a last letter whenever t− f ≤ i ≤ 2t− 2f .

Max f for each i: 2t−i
2 .
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Note that because we require n ≥ 2t, both cases (2) and (3) cover all possible
t-prefixes. That is, we cannot possibly have any t-prefixes that end in [d]k for
any k > 0. Additionally, note that each case covers a different range of last
letters: (1) i = t; (2) t + 1 ≤ i ≤ 2t; and (3) t − f ≤ i ≤ t − 1. Hence we may
count each case separately.

1. There is only one string in this case.

2. We showed previously that max(g) = b 2t−i
2 c. Thus we have the following

formula. {
d

t−1
2 + 2 ·

∑ t−3
2

j=0 d
j , if t is odd;

2 ·
∑ t−2

2
j=0 d

j , if t is even.

3. In this case, our subcases (a) and (b) overlap. We break up our ranges
slightly differently this time to determine max(f).

(a) 1 ≤ i < t−1
2 .

In this range for i, we must be in the higher range for f , so we have
max(f) = b 2t−i

2 c.
(b) t−1

2 ≤ i ≤ t− 2.

Considering both ranges for f , we have the following maximum value
for f , depending on i.

max(f) = max

(
t+ 1

2
,

⌊
2t− i

2

⌋)
=

⌊
2t− i

2

⌋
(c) i = t− 1.

For this value of i, we must be in the lower range for f , and hence
we have max(f) = b t+1

2 c = b 2t−i
2 c.

Hence all cases (a)-(c) have max(f) = b 2t−i
2 c. Thus we have the following

formula. {
2 ·
∑t−1

j= t+1
2
dj , if t is odd;

−d t
2 + 2 ·

∑t−1
j= t

2 +1 d
j , if t is even.

Now when we combine all of our equations we get the following final count.

1− db t
2 c + 2 ·

t−1∑
j=0

dj

Note that this provides only an upper bound on our t-prefixes - if we have
repeated letters than we may have double-counted.

Now we are ready to prove our theorem.
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Proof of Theorem 4.61. Consider two arbitrary strings: x = x1x2 . . . xn and
y = y1y2 . . . yn. We will show that these two strings cannot be t-twins by
showing that Bt(x) \Bt(y) 6= ∅. This will be done in two cases: x1x2 . . . xn−t 6=
y1y2 . . . yn−t and xt+1xt+2 . . . xn 6= yt+1yt+2 . . . yn. Note that this covers all
cases, since x 6= y implies there is some i ∈ [1, n] such that xi 6= yi. Additionally,
since n ≥ 2t, we must have that i ∈ [1, n− t] ∪ [t+ 1, n]. Hence at least one of
these two cases must be true.

1. x1x2 . . . xn−t 6= y1y2 . . . yn−t.

We will show that there must exist some string in Bt(x) that is not in
Bt(y). In particular, there is a string a ∈ [d]t ⊕ x1 . . . xn−t such that
a 6∈ Bt(y). We do this by counting the number of distinct t-prefixes in
Bt(y) \ [d]t ⊕ y1y2 . . . yn−t, and showing that this number is smaller than
dt. Note that because of the case that we are in, we need not consider the
strings in [d]t⊕y1y2 . . . yn−t. If we can show that the number of t-prefixes
is smaller than dt, then there must be some string z ∈ Bt(x) \Bt(y).

From Lemma 4.62, we know that the total number of t-prefixes in Bt(y) \
[d]t⊕ y1y2 . . . yn−t is equal to 1− db t

2 c+ 2 ·
∑t−1
j=0 d

j , and that one of those
t-prefixes is y1 . . . yt, which we may ignore because of the case that we are
in. Define f(t) = −db t

2 c+ 2 ·
∑t−1
j=0 d

j and g(t) = dt− f(t). If we can show
that g(t) is always positive for d ≥ 3, then we know that there exists a
string a ∈ ([d]t ⊕ x1 . . . xn−t) \ ([d]t ⊕ y1 . . . yn−t) ⊆ Bt(x) \ Bt(y). Then
we know that x and y are not t-twins.

Consider our new function g(t).

g(t) = dt + dt/2 − 2 ·
t−1∑
j=0

dj

= dt + dt/2 − 2 · (dt − 1)

d− 1

=
dt(d− 1) + dt/2(d− 1)− 2(dt − 1)

d− 1

We will determine the nature of this function by finding the roots. We find
the roots by setting the numerator equal to 0 and making a substitution
x = dt/2.

dt(d− 1) + dt/2(d− 1)− 2(dt − 1) = x2(d− 3) + x(d− 1) + 2

The roots of this equation are x = −1 and x = −4
2d−6 . Reversing our

substitution this equates to dt/2 = −1 and dt/2 = −4
2d−6 . The first root is

impossible, and the second will only be possible when 2d−6 < 0, or d < 3.
Hence, if d ≥ 3, our function has no real roots and is always positive.

2. xt+1xt+2 . . . xn 6= yt+1yt+2 . . . yn.
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In this case, we want to show that there exists some string:

a ∈
(
xt+1 . . . xn ⊕ [d]t

)
\
(
yt+1 . . . yn ⊕ [d]t

)
⊆ Bt(x) \Bt(y).

Because of the symmetric nature of the strings and edges in the de Bruijn
graph, this case follows the same as the previous case, with analogous
lemmas to Lemmas 3.34 and 4.62 for t-suffixes (instead of t-prefixes). Thus
we will again always have fewer than dt prefixes represented in Bt(y) \
(yt+1 . . . yn ⊕ [d]t), so we will always be able to find the desired string a
that can identify x from y.

Specific Results

Theorem 4.63. For n ≥ 3, the graph B(2, n) is identifiable.

Proof. For n = 3, the following is a minimum 1-identifying code on B(2, 3).

{001, 010, 011, 101}

When n ≥ 4, we have the following proof, with many cases. We will prove
this result by showing that it is not possible to have two vertices x and y that
are twins. Suppose (for a contradiction) that x and y are in fact twins in B(2, n).
First, the 1-balls for each vertex are as follows.

B1(x) =


x1x2 . . . xn
0x1 . . . xn−1

1x1 . . . xn−1

x2 . . . xn0
x2 . . . xn1

 B1(y) =


y1y2 . . . yn
0y1 . . . yn−1

1y1 . . . yn−1

y2 . . . yn0
y2 . . . yn1


Without loss of generality, we assume that x1 = 0. Then we have two cases:

either x1x2 . . . xn = 0y1 . . . yn−1, or x1x2 . . . xn ∈ {y2 . . . yn0, y2 . . . yn1}.

1. x1x2 . . . xn = 0y1 . . . yn−1.

In this case, we know that 0x2 . . . xn = 0y1 . . . yn−1, and so x2 . . . xn =
y1 . . . yn−1. From this, we know the following equality holds.

{x2 . . . xn0, x2 . . . xn1} = {y1y2 . . . yn, y1y2 . . . yn}

This gives us two cases: either y1y2 . . . yn ∈ {0y1 . . . yn−1, 1y1 . . . yn−1}, or
y1y2 . . . yn ∈ {y2 . . . yn0, y2 . . . yn1}.

(a) y1y2 . . . yn ∈ {0y1 . . . yn−1, 1y1 . . . yn−1}
The fact that y2 . . . yn = y1 . . . yn−1 implies the following.

y1 = y2 = · · · = yn−1 = yn
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Because we are in Case 1 and x2 . . . xn = y1 . . . yn−1, we also have
the following equalities.

x2 = x3 = · · · = xn = y1

Hence our 1-balls must be as shown below for some a ∈ {0, 1}.

B1(x) =


0a . . . a
00a . . . a
10a . . . a
a . . . a0
a . . . a1

 B1(y) =


a . . . aa
0a . . . a
1a . . . a
a . . . aa0
a . . . aa1


Note that since n ≥ 4, we have two strings inB1(y) that have different
second-to-last and third-to-last letters, however in B1(x) there are no
such strings. Hence these sets cannot possibly be equal, which is a
contradiction.

(b) y1y2 . . . yn ∈ {y2 . . . yn0, y2 . . . yn1}
This implies that y1y2 . . . yn−1 = y2 . . . yn, and so we have the follow-
ing chain of equalities.

y1 = y2 = · · · = yn−1 = yn

Hence y = an and x = 0an−1 for some a ∈ {0, 1}. Since x 6= y, we
must have a = 1 and thus our 1-balls, given below, are clearly not
equal - a contradiction.

B1(x) =


01 . . . 1
001 . . . 1
101 . . . 1
1 . . . 10
1 . . . 11

 B1(y) =

 11 . . . 1
01 . . . 1
1 . . . 10


2. x1x2 . . . xn ∈ {y2 . . . yn0, y2 . . . yn1} and y2 = 0.

From this, we have the following 1-balls.

B1(x) =


0x2 . . . xn
00x2 . . . xn−1

10x2 . . . xn−1

x2 . . . xn0
x2 . . . xn1

 B1(y) =


y10x2 . . . xn−1

0y10x2 . . . xn−2

1y10x2 . . . xn−2

0x2 . . . xn−10
0x2 . . . xn−11


Now we have two cases: either (a) 1y10x2 . . . xn−2 = 10x2 . . . xn−1, or (b)
1y10x2 . . . xn−2 ∈ {x2 . . . xn0, x2 . . . xn1}.

(a) 1y10x2 . . . xn−2 = 10x2 . . . xn−1.

This statement implies that we have the following chain of equalities.

y3 = · · · = yn = x2 = · · · = xn−1
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In particular, we now know that x = 0a . . . a and y = 00a . . . a. Hence
our 1-balls are given below.

B1(x) =


0a . . . a
00a . . . a
10a . . . a
a . . . a0
a . . . a1

 B1(y) =


00a . . . a
000a . . . a
100a . . . a
0a . . . a0
0a . . . a1


Since 000a . . . a ∈ B1(y), the only way to have B1(x) = B1(y) would
require a = 0, and thus x = y, which is a contradiction.

(b) 1y10x2 . . . xn−2 ∈ {x2 . . . xn0, x2 . . . xn1} and x2 = 1.

In this instance, we know that x2 . . . xn = 1y10x2 . . . xn−3, and hence
x5 . . . xn = x2 . . . xn−3. This tells us that x = 01y101y1 . . . and y =
y101y101 . . .. In particular, our 1-balls are now shown below.

B1(x) =


01y101y1 . . .
001y101y1 . . .
101y101y1 . . .
1y101y1 . . . 0
1y101y1 . . . 1

 B1(y) =


y101y101 . . .
0y101y101 . . .
1y101y101 . . .
01y101 . . . 0
01y101 . . . 1


Note thatB1(y) contains two distinct strings beginning with 01, while
B1(x) contains only one such string. Hence it is not possible that
B1(x) = B1(y), which contradicts our initial assumption.

The binary undirected de Bruijn graph B(2, n) turns out to be more difficult
to establish a set pattern for t-identifiability. Note that we have B(2, 10) is not
8-identifiable as we would think. We have two pairs of 8-twins:

{0111011110, 0111101110}

and

{1000010001, 1000100001}.

Note that in the majority of cases, we find the maximum t such that B(2, n) is
t-identifiable is t = n− 2, however there are a few cases in which this does not
hold.

For d ≥ 3, we have a few remaining specific results. Some of these results
are also covered by the more general results in the previous section.

Lemma 4.64. For n > 3 and d ≥ 3, B(d, n) is 2-identifiable.
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Proof. We will show that for arbitrary x1 . . . xn and y1 . . . yn we have B2(x) 6=
B2(y). Recall that we have the following contents in B2(y).

B2(y1 . . . yn) =



y1 . . . yn
[d]⊕ y1 . . . yn−1

y2 . . . yn ⊕ [d]
[d]2 ⊕ y1 . . . yn−2

y3 . . . yn ⊕ [d]2

[d]⊕ y2 . . . yn
y1 . . . yn−1 ⊕ [d]


We have two cases.

1. x1 . . . xn−2 6= y1 . . . yn−2.

We will show that there exists some a1 . . . an ∈ [d]2 ⊕ x1 . . . xn−2 ⊆ B2(x)
that is not in B2(y). The following table shows the options of how a1 . . . an
could lie inside of B2(y), and the corresponding choices for a1a2.

a1 . . . an = y1 . . . yn y1y2

a1 . . . an ∈ [d]⊕ y1 . . . yn−1 [d]⊕ y1

a1 . . . an ∈ y2 . . . yn ⊕ [d] y2y3

a1 . . . an ∈ [d]2 ⊕ y1 . . . yn−2 N/A

a1 . . . an ∈ y3 . . . yn ⊕ [d]2 y3y4

a1 . . . an ∈ [d]⊕ y2 . . . yn [d]⊕ y2

a1 . . . an ∈ y1 . . . yn−1 ⊕ [d] y1y2

Note that the fourth row in this table is marked “N/A” because of the case
that we are in. Additionally, note that at most this list accounts for 2d+2
of the d2 possibilities for a1a2. Hence whenever d ≥ 3 there is always a
choice for a1a2 that does not lie on this list. By choosing that option, we
have found a1 . . . an ∈ B2(x) \B2(y).

2. x3 . . . xn 6= y3 . . . yn.

We will show that there exists some a1 . . . an ∈ x3 . . . xn ⊕ [d]2 ⊆ B2(x)
that is not in B2(y). The following table shows the options of how a1 . . . an
could lie inside of B2(y), and the corresponding choices for an−1an.

a1 . . . an = y1 . . . yn yn−1yn
a1 . . . an ∈ [d]⊕ y1 . . . yn−1 yn−2yn−1

a1 . . . an ∈ y2 . . . yn ⊕ [d] yn ⊕ [d]
a1 . . . an ∈ [d]2 ⊕ y1 . . . yn−2 yn−3yn−2

a1 . . . an ∈ y3 . . . yn ⊕ [d]2 N/A

a1 . . . an ∈ [d]⊕ y2 . . . yn yn−1yn
a1 . . . an ∈ y1 . . . yn−1 ⊕ [d] yn−1 ⊕ [d]

Note that the fifth row in this table is marked “N/A” because of the case
that we are in. Additionally, note that at most this list accounts for 2d+2
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of the d2 possibilities for an−1an. Hence whenever d ≥ 3 there is always a
choice for an−1an that does not lie on this list. By choosing that option,
we have found a1 . . . an ∈ B2(x) \B2(y).

Lemma 4.65. For d ≥ 3, the graph B(d, 3) is 2-identifiable.

Proof. We will show that for arbitrary x1x2x3 and y1y2y3 we have B2(x) 6=
B2(y). We have three cases.

1. If x1 6= y1, then consider a1a2a3 ∈ [d]2 ⊕ x1 ⊆ B2(x). We will choose
a1a2 so as to avoid all contents of the following set of size at most 3d− 1:
{[d]⊕ y1, [d]⊕ y2, y3⊕ [d], y1y2, y2y3}. Since there are a total of d2 options
for a1a2, as long as d ≥ 3 there is still a choice for a1a2 that lies outside
of the given set. Once we have selected such a pair a1a2, then we have a
string a1a2a3 ∈ B2(x) \B2(y).

2. If x3 6= y3, then consider a1a2a3 ∈ x3 ⊕ [d]2. We will choose a2a3 so as
to avoid all contents of the following set of size at most 3d − 1: {[d] ⊕
y1, y2 ⊕ [d], y3 ⊕ [d], y1y2, y2y3}. Since there are a total of d2 options for
a2a3, as long as d ≥ 3 there is still a choice for a2a3 that lies outside of the
given set. Once we have selected such a pair a2a3, then we have a string
a1a2a3 ∈ B2(x) \B2(y).

3. Lastly, if x1 = y1, x3 = y3, but x2 6= y2, then we have several cases.

(a) If x1x2 = y2y3, then we must have x = abb and y = aab for some
a 6= b ∈ [d]. Then cbb ∈ B2(x) \B2(y) for any c 6= a, b.

(b) If x1 = x3, then x = aba and y = aca for some b 6= c ∈ [d]. At
least one of b, c 6= a, and so choose some k ∈ {b, c} \ {a}. Then
kak ∈ B2(x)4B2(y), and so B2(x) 6= B2(y).

(c) If x1x2 6= y2y3 and x1 6= x3, then we consider a1a2a3 ∈ x1x2 ⊕ [d]
with a3 6= y1, y2. Then a1a2a3 ∈ B2(x) \B2(y).

Hence in all cases, B2(x) 6= B2(y) for arbitrary x, y, so it is not possible to have
a pair of 2-twins {x, y} in B(d, 3). Thus B(d, 3) is 2-identifiable.

Note that Lemmas 4.64 and 4.65 combined tell us that all graphs B(d, n)
with d, n ≥ 3 are 2-identifiable.

Bounds

Theorem 4.66 ([14]). The size of an identifying code for a regular graph with
N vertices and vertex degree D is lower-bounded by

M(t) ≥ 2N

D + 2
.
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Proof. Consider the K × N binary matrix A where akn = 1 if and only if the
kth codeword covers the nth vertex, and akn = 0 otherwise. There must be
K(D+1) nonzero entries in the matrix, as each codeword covers D+1 vertices.
On the other hand, at most K columns can have weight 1, while the remaining
N−K columns must have weight at least 2, the number of nonzero entries must
be at least K + 2(N −K) = 2N −K. Thus K(D + 1) ≥ 2N −K, or

M(t) = K ≥ 2N

D + 2
.

Corollary 4.67. The size of an identifying code for a graph with N vertices
and maximum degree D is lower-bounded by

M(t) ≥ 2N

D + 2
.

Proof. Using the previous argument, the maximum number of nonzero entries
in the matrix is K(D + 1). The rest of the argument remains unchanged.

Note that for the undirected de Bruijn graph, the multiple edges and loops do
not change the identifying codes from the underlying simple, undirected graph.
Thus we can apply Corollary 4.67 easily by simply removing multiple edges and
loops and considering a graph with maximum degree 2d.

Corollary 4.68. The size of an identifying code for the undirected binary de
Bruijn graph B(2, n) is lower-bounded by

M(t) ≥ 2n+1

6
=

1

3
· |B(2, n)|.

Corollary 4.69. The size of an identifying code for the undirected de Bruijn
graph B(d, n) is lower-bounded by

M(t) ≥ dn

d+ 1
.

In our small examples of B(2, 3) and B(2, 4), this bound agrees. For exam-
ple, a minimum 1-identifying code for B(2, 3) is {001, 010, 011, 101} with size
4. Corollary 4.68 gives us a lower bound of 8

3 = 2.66. Also, a minimum 1-
identifying code for B(2, 4) is {0001, 0010, 0101, 0111, 1011, 1100} with size 6,
while Corollary 4.68 gives us a lower bound of 16

3 = 5.33, a tight bound in this
case.

An alternative lower bound is given by the following theorem that is based
on the fact that the de Bruijn graph is a line graph. For more on this, see
Chapter 4.5.

Theorem 4.70 ([11]). Let G be a twin-free line graph on n ≥ 4 vertices. Then
we have

γID(G) ≥ 3
√

2

4

√
n.
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For the de Bruijn graph, this implies a lower bound of 3
√

2
4

√
dn. However,

the bound from Corollary 4.69 gives us a better bound for this class of graphs.

Non-Optimal Constructions

The following result is inspired by an identical result for the n-dimensional
binary cube in [14].

Theorem 4.71. If C∗ is an optimal 2-identifying code for the undirected de
Bruijn graph B(d, n), then

C = {w | ∃v ∈ C∗ s.t. d(v, w) = 1}

is a 1-identifying code.

Proof. We will show that every vertex in the undirected de Bruijn graph B(d, n)
is covered by a unique set of codewords. Let x = x1x2 . . . xn ∈ B(d, n). Note
that the vertices at distance 1 from x are:

U0 = x2x3 . . . xn0 V0 = 0x1x2 . . . xn−1

U1 = x2x3 . . . xn1 V1 = 1x1x2 . . . xn−1

U2 = x2x3 . . . xn2 V2 = 2x1x2 . . . xn−1

...
...

Ud−1 = x2x3 . . . xn(d− 1) Vd−1 = (d− 1)x1x2 . . . xn−1

We will refer to vertices of type Ui as undirected out-neighbors and vertices of
type Vi as undirected in-neighbors for obvious reasons. We have three cases.

Case 1: x ∈ C∗: In this case, x is covered by all Ui, Vi for i ∈ {0, 1, 2, . . . , d−1}
for the code C. If some w = w1w2 . . . wn is also covered by all d Ui’s and
all d Vi’s, then we must prove that w = x.

Note that for such a vertex w, we can only have that w is an undirected
out-neighbor of at most one Ui and is an undirected in-neighbor of at most
one Vj . Thus we have that w is the in-neighbor of at least one Ui and the
out-neighbor of at least one Vj . Then we know some information about
the letters of w, namely:

w = x1x2 . . . xn−1wn

= w1x2 . . . xn−1xn.

Hence we must have w1 = x1 and wn = xn, or in other words w = x.

Case 2: x ∈ C \ C∗: In this case, x is covered by itself and every one of its
neighbors in C. The only other vertices covered by x are the vertices
Ui, Vi for i ∈ {0, 1, 2, . . . , d − 1}. We must show that x is covered by
something that each of its neighbors is not covered by (or vice versa),
thus proving that they have different cover sets.
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Let T ∈ {Ui | i ∈ {0, 1, . . . , d− 1} ∪ {Vi | i ∈ {0, 1, . . . , d− 1} be arbitrary.
Since x ∈ C, there must be some y ∈ C∗ with d(y, x) = 1. This implies
that d(y, T ) ≤ 2. Then in the code C∗, both x and T are covered by y,
since C∗ has radius t = 2. However since C∗ is also an identifying code, x
and T must have different identifying sets, so there is some z ∈ C∗ that
either:

1. covers x and not T , or

2. covers T and not x.

In Case (2.1), we must have d(z, x) ≤ 2 and d(z, T ) > 2, which implies that
d(z, x) = 2. Then there must be some a between z and x, i.e. d(z, a) = 1
and d(x, a) = 1. Then a ∈ C and also covers x for code C, but a can’t
cover T for C as otherwise we would have T covered by z for C∗. See
Figure 4.

z

y

a

x T

Figure 4: Case 2.1: Blue nodes in C∗, red nodes in C.

In Case (2.2), we must have d(z, T ) ≤ 2 and d(z, x) > 2, which implies
that d(z, T ) = 2. Then there is some a between z and T , i.e. d(z, a) = 1
and d(a, T ) = 1. This implies that a ∈ C and covers T for C, but a can’t
cover x for C as otherwise we would have x covered by z for C∗. See
Figure 5.

z

y

a

x T

Figure 5: Case 2.2: Blue nodes in C∗, red nodes in C.

Case 3: x ∈ V \ (C ∪ C∗): In this case, x is covered by some y ∈ C and some
z ∈ C∗ with d(z, y) = 1. We will compare x with another vertex w ∈ V
that is covered by y for C and show that they have different identifying
sets for C. We first note that we must have d(w, y) ≤ d(x, y) = 1 and
d(w, z) ≤ d(x, z) = 2, so w is also covered by z for C∗. Since C∗ is an
identifying code, there must be some v ∈ C∗ that either:
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1. covers x and not w, or

2. covers w and not x.

See Figure 6.

z y x

Figure 6: Case 3: Blue nodes in C∗, red nodes in C.

In Case (1), since x 6∈ C, we have d(v, x) = 2 and there is some a ∈ C
between v and x. As v does not cover w for C∗, we must have d(a,w) > 1,
so a covers x but not w for C. See Figure 7.

z y

w

x

av

Figure 7: Case 3.1: Blue nodes in C∗, red nodes in C.

For Case (2), since x 6∈ C, we have d(v, x) > 1. Also, as v covers w but
not x for C∗, we must have 1 ≤ d(w, v) ≤ 2.

If d(w, v) = 1, then w 6= y, as otherwise v covers x for C∗. This implies
that d(w, x) > 1, else v would cover x for C∗. So we must have w ∈ C,
hence w covers itself but not x for C. See Figure 8.

z y

w

x

v

Figure 8: Case 3.2.1: Blue nodes in C∗, red nodes in C.

Finally, if d(w, v) = 2, then there must be some a ∈ C with d(a,w) = 1 =
d(a, v). This implies that d(a, x) > 1, since otherwise we would have v
covering x for C∗. Hence a covers w but not x for C. See Figure 9.
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z y

w

x

a v

Figure 9: Case 3.2.2: Blue nodes in C∗, red nodes in C.

Next we would like to consider constructions using direct sums. This idea
comes from constructions developed for the cube graph Qn with edges between
strings with Hamming distance one (strings differ in any one bit). For example,
results similar to the following two theorems would be nice.

Theorem 4.72 ([5]). Assume that C is 1-identifying on Qn. Then the direct
sum {0, 1} ⊕ C is 1-identifying on Qn+1 if and only if d(c, C \ {c}) ≤ 1 for all
c ∈ C.

Theorem 4.73 ([5]). If C is 1-identifying on Qn then C ⊕ {00, 01, 10, 11} is
1-identifying on Qn+2.

A first thought might be to consider C∗ = {0, 1} ⊕ C ⊕ {0, 1}, where C is a
1-identifying code on B(2, n− 2). However, if the vertex 0n−2 ∈ V (B(2, n− 2))
is in C and is only covered by itself, then we have:

B1(10n−1) ∩ C∗ = {0n, 10n−1, 0n−11, 10n−21}
B1(0n−11) ∩ C∗ = {0n, 10n−1, 0n−11, 10n−21}

Note that B1(10n−1)∩C∗ is missing only the neighbor 110n−2, as if this vertex
were included then we must have 10n−3 ∈ C, which would cover 0n−2. Likewise,
B1(0n−11) ∩ C∗ is missing 0n−211 because we cannot have 0n−31 ∈ C.

An initial result similar to these is the following.

Theorem 4.74. Let C ′ be a 1-identifying code on B(2, n − 1) such that for
every x ∈ V (B(2, n− 1)) we have at least one undirected in-neighbor of x in C ′,
and at least one undirected out-neighbor of x in C ′. Then C = {0, 1} ⊕ C ′ is a
1-identifying code on B(2, n).

Proof. We must show that C satisfies the following two conditions: (1) every
x ∈ V (B(2, n)) has a neighbor in C, and (2) for every x, y ∈ V (B(2, n)) we have
IDC(x) 6= IDC(y).

1. Let x = x1x2 . . . xn ∈ V (B(2, n)). Then we must have that x′ = x2x3 . . . xn
is covered by some undirected out-neighbor z′ = x3x4 . . . xnzn ∈ C ′. Then
we must have

{0x3x4 . . . xnzn, 1x3x4 . . . xnzn} = {0, 1} ⊕ z′ ⊆ C.

In other words, we have x2x3 . . . xnzn ∈ C, which is also a neighbor of x,
so x is covered.
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2. Let x = x1x2 . . . xn, y = y1y2 . . . yn ∈ V (B(2, n)) be distinct. Define
x′ = x2x3 . . . xn and y′ = y2y3 . . . yn. We have two cases.

x′ = y′: In this case we must have y1 = x1. Let w′ ∈ C ′ be an undirected
in-neighbor to x′ = y′. Then we must have w3 . . . wn = x2 . . . xn−1,
and hence

w2w3 . . . wn ∈ {x1x2 . . . xn−1, x1x2 . . . xn−1}.

Thus we must have that 0⊕w′ and 1⊕w′ are elements in C and also
undirected in-neighbors of either x or y, but not both. Therefore
w ∈ IDC(x)4IDC(y), so IDC(x) 6= IDC(y).

x′ 6= y′: Without loss of generality we may assume that there is some
w′ ∈ IDC′(x

′) \ IDC′(y′). This implies that both w′ 6→ y′ and y′ 6→
w′. In other words, we know that both w3 . . . wn 6= y2 . . . yn−1 and
w2 . . . wn−1 6= y3 . . . yn. Hence y1y2 . . . yn−1 6∈ {0, 1} ⊕ w3 . . . wn and
y2y3 . . . yn 6∈ {0, 1} ⊕ w2 . . . wn−1, and therefore w 6→ y and y 6→ w.
Thus w ∈ IDC(x) \ IDC(y), so the identifying sets are distinct.

While the requirement that all codewords have both in- and out-neighbors
in the identifying code is a much stronger requirement than those in Theorem
4.72, it does still provide identifying codes of small cardinality. For example,
the minimum size identifying code in the graph B(2, 3) has size 4, however
no identifying codes of size 4 are extendable under this operation. Of the 18
identifying codes of size 5, 8 are extendable to B(2, 4), and two of the 8 satisfy
the conditions of Theorem 4.74. These two graphs are shown in Figure 10.

000

001

010

100

101

110

011

111 000

001

010

100

101

110

011

111

Figure 10: Identifying Codes for B(2, 3) of size 5 satisfying our conditions 4.74

For certain cases, building identifying codes is much simpler. We have the
following two theorems for the graphs B(d, 2) for all d. Note that the first
theorem allows for exactly one empty identifying set.

Theorem 4.75. The set S = {0i, i0 | i ∈ [d − 2]} is an identifying code for
B(d, 2).

Proof. First, for ab ∈ V (B(d, 2)), we have the following identifying sets ID(ab).

1. If ab = 00, then ID(ab) = S.

41

Approved for Public Release; Distribution Unlimited.



2. If ab = 0b for b ∈ [d− 2], then ID(ab) = {i0 | i ∈ [d− 2]} ∪ {0b}.

3. If ab = 0(d− 1), then ID(ab) = {i0 | i ∈ [d− 2]}.

4. If ab = a0 for a ∈ [d− 2], then ID(ab) = {0i | i ∈ [d− 2]} ∪ {a0}.

5. If ab = (d− 1)0, then ID(ab) = {0i | i ∈ [d− 2]}.

6. If ab = ab for a, b ∈ [d− 2], then ID(ab) = {0a} ∪ {b0}.

7. If ab = a(d− 1) for a ∈ [d− 2], then ID(ab) = {0a}.

8. If ab = (d− 1)b for b ∈ [d− 2], then ID(ab) = {b0}.

9. If ab = (d− 1)(d− 1), then ID(ab) = {}.

Next, we must show that for any distinct pair ab, xy ∈ V (B(d, 2)), ID(ab) 6=
ID(xy). Clearly if ab and xy are of different types, then ID(ab) 6= ID(xy). Also,
types (1), (3), (5), and (9) have only one element. That only leaves us with the
following five cases.

2. We must have 0b 6= 0y. Then since 0b ∈ ID(0b) \ ID(0y), we know that
ID(0b) 6= ID(0y).

4. We must have a0 6= x0. Then since a0 ∈ ID(a0) \ ID(x0), we know that
ID(a0) 6= ID(x0).

6. We must have either a 6= x, and so 0a ∈ ID(ab) \ ID(xy), or b 6= y and
hence b0 ∈ ID(ab) \ ID(xy). In either case, we have ID(ab) 6= ID(xy).

7. We have a(d− 1) 6= x(d− 1). Then since 0a ∈ ID(a(d− 1)) \ ID(x(d− 1)),
we know that ID(a(d− 1)) 6= ID(x(d− 1)).

8. We have (d− 1)b 6= (d− 1)y. Then since b0 ∈ ID((d− 1)b)) \ ID((d− 1)y),
we know that ID((d− 1)b) 6= ID((d− 1)y).

The previous theorem gives us an identifying code for B(d, 2) of size 2(d−2).
The next theorem illustrates an identifying code for B(d, 2) of size b 3d

2 c, which
is an improvement over the last result whenever d > 8.

Theorem 4.76. Define the following sets.

S = {12, 23, 34, . . . , (d− 1)d, d1}

T =

{
{13, 35, 57, . . . , (d− 2)d}, if d is odd;
{13, 35, 57, . . . , (d− 1)1}, if d is even.

Then S ∪ T is an identifying code for B(d, 2).

42

Approved for Public Release; Distribution Unlimited.



Proof. First, we show that every vertex in B(d, 2) is covered by S. For any
ab ∈ B(d− 2), ab is adjacent to both b(b+ 1) and (a− 1)a.

Next, we must show that all identifying sets are unique. Note that if a vertex
ab has only one neighbor in S, then a = b+ 1 so ab = (b+ 1)b. Note that for all
b, there is exactly one vertex b(b+1) with |N [(b+1)b]∩S| = 1, so the identifying
sets are unique.

Otherwise, we assume ab 6= (b+1)b and xy 6= (y+1)y with ab 6= xy and show
that N [xy]∩T 6= N [ab]∩T . Note that if N [ab]∩S 6= N [xy]∩S then we are done,
so we assume otherwise. Then we have {b(b+1), (a−1)a} = {y(y+1), (x−1)x}.
This gives us two cases.

1. b(b+ 1) = y(y + 1) and (a− 1)a = (x− 1)x.

In this case we have b = y and a = x, or ab = xy, which is a contradiction.

2. b(b+ 1) = (x− 1)x and (a− 1)a = y(y + 1).

In this case we have b = x − 1 and a = y + 1. In other words, we have
ab = (y + 1)(x− 1). We have two subcases.

2.1 If x is odd, then x − 1 is even. Then T ∩ N [xy] contains (x − 2)x.
Note that N [(y + 1)(x− 1)] ∩ T contains (x− 2)x only if x = y + 1,
which is a contradiction. Thus we must have

(x− 2)x ∈ (N [xy] ∩ T ) \ (N [(y + 1)(x− 1)] ∩ T.

2.2 If x is even, then x− 1 is odd. Then N [(y + 1)(x− 1)] ∩ T contains
(x − 1)(x + 1). Note that N [xy] ∩ T contains (x − 1)(x + 1) only if
y = x− 1, or x = y+ 1, which is a contradiction. Thus we must have

(x− 1)(x+ 1) ∈ (N [(y + 1)(x− 1)] ∩ T ) \ (N [xy] ∩ T ).

4.4 De Bruijn Functions

4.4.1 Distance

Many parameters that we are interested in rely on distance in de Bruijn graphs.
Fortunately, formulas for distance in both the directed and undirected graphs
have already been determined.

Theorem 4.77 ([17]). For all X,Y in the directed graph ~B(d, n),

d(X,Y ) = n−max{s | 1 ≤ s ≤ n, xn−s+1xn−s+2 . . . xn = y1y2 . . . ys

where, by convention, the maximum over an empty set is zero.

The formula for the directed graph is straightforward and simply computes
the maximum match of suffix in X and prefix in Y .
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Theorem 4.78 ([17]). For all X,Y in the undirected graph B(d, n),

d(X,Y ) = 2n− 1 + min{ min
1≤i,j≤n

(i− j− `i,j(X,Y )), min
1≤i,j≤n

(−i+ j− ri,j(X,Y ))}

where

`i,j(X,Y ) = max{s | s ≤ j, s ≤ n− i+ 1,

xixi+1 . . . xi+s−1 = yj−s+1yj−s+2 . . . yj

ri,j(X,Y ) = max{s | s ≤ i, s ≤ k − j + 1,

xi−s+1xi−s+2 . . . xi = yjyj+1 . . . yj+s−1

where, by convention, the maximum over an empty set is zero.

The following example illustrates the mechanics of this formula for the undi-
rected graph. Let X = 010 and Y = 110 in the undirected de Bruijn graph
B(2, 3). Then, using Liu’s algorithm, we must compute the following.

D(X,Y ) = 2n− 1 + min
1≤i,j≤n

(i− j −max{`i,j(X,Y ), rj,i(X,Y )})

= 5 + min
1≤i,j≤3

(i− j −max{`i,j(X,Y ), rj,i(X,Y )})

Our functions `i,j and rj,i are as follows.

`i,j = max{s | s ≤ j, s ≤ 4− i, xixi+1 . . . xi+s−1 = yj−s+1yj−s+2 . . . yj}
rj,i = max{s | s ≤ j, s ≤ 4− i, xj−s+1xj−s+2 . . . xj = yiyi+1 . . . yi+s−1}

We find the following values.

i j `i,j(X,Y ) rj,i(X,Y ) max{`i,j , rj,i} i− j −max{`i,j , rj,i}
1 1 {} = 0 {} = 0 0 0
1 2 {} = 0 {1} = 1 1 −2
1 3 {1} = 1 {} = 0 1 −3
2 1 {1} = 1 {} = 0 1 0
2 2 {1} = 1 {1} = 1 1 −1
2 3 {2} = 2 {2} = 2 2 −3
3 1 {} = 0 {1} = 1 1 1
3 2 {} = 0 {} = 0 0 1
3 3 {1} = 1 {1} = 1 1 −1

The minimum in the right-most column is −3, and so we find D(X,Y ) =
5 + (−3) = 2.

We have implemented these functions in the following manner using Matlab.
We propose the following conjecture. Define the term distance class t for

vertex X as the set
Dt(X) = {Y | d(X,Y ) = t}.

Conjecture 4.79. The set V \{D0(0n), D1(0n), Dn(0n)} is an identifying code
for B(2, n) when n ≥ 4.
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Algorithm 1 LHS(i, j, X, Y): Computing `i,j(X,Y )

1: procedure LHS(i, j,X, Y )
2: n = length(X)
3: sMax = 0
4: s = 0
5: while (s ≤ j) and (s ≤ n− i+ 1) do
6: if xixi+1 . . . xi+s−1 = yj−s+1yj−s+2 . . . yj then
7: sMax = s
8: end if
9: s = s+ 1

10: end while
11: end procedure
12: return sMax

Algorithm 2 RHS(i, j, X, Y): Computing ri,j(X,Y )

1: procedure RHS(i, j,X, Y )
2: n = length(X)
3: sMax = 0
4: s = 0
5: while (s ≤ i) and (s ≤ n− j + 1) do
6: if xi−s+1xi−s+2 . . . xi = yjyj+1 . . . yj+s−1 then
7: sMax = s
8: end if
9: s = s+ 1

10: end while
11: end procedure
12: return sMax

Algorithm 3 D(X, Y): Computing the distance between X and Y

1: procedure D(X,Y )
2: n = length(X)
3: M = zeros(n, n)
4: for i from 1 to n do
5: for j from 1 to n do
6: M(i, j) = i− j −max{LHS(i, j,X, Y ),RHS(j, i,X, Y )}
7: end for
8: end for
9: distance = 2n− 1 + min(min(M), [ ], 2)

10: end procedure
11: return distance
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While the sets D0(0n) and D1(0n) are easily determined:

D0(0n) = {0n}, and

D1(0n) = {10n−1, 0n−11},

the set Dn(0n) is a more difficult computation. In order to determine this set,
we must determine X ∈ B(2, n) such that d(X, 0n) = n. As a start, we direct
the interested reader to Lemma 3.35, which shows that in the nonbinary case
for a specific node there is always at least one other node at distance n.

4.4.2 Balls in Directed de Bruijn Graphs

We begin by exploring formulas for B−t (x).

Lemma 4.80. B−t (x1x2 . . . xn) =
⋃t
i=0Aid ⊕ x1x2 . . . xn−i.

Definition 4.81. We will refer to the set Aid ⊕ x1x2 . . . xn−i from Lemma 4.80
as suffix class i with respect to x. We will denote this by Si(x).

Lemma 4.82. |Si(x)| = di.

Definition 4.83. If there exist i, j ∈ [0, t] with i < j such that x1x2 . . . xn−j =
xj−i+1xj−i+2 . . . xn−i, then we will say that x has an (i, j)-shift.

The following lemma makes clear why we chose this notation.

Lemma 4.84. If there exists a string y and i, j ∈ [0, t] with i < j such that
y ∈ Si(x) and y ∈ Sj(x), then x has an (i, j)-shift.

Proof. We know that the following two equalities must be true.

yi+1yi+2 . . . yn = x1x2 . . . xn−i

yj+1yj+2 . . . yn = x1x2 . . . xn−j

Since i < j, note that the second equality compares shorter strings. Thus we
deduce that the following equalities must also hold.

xn−i = yn = xn−j
xn−i−1 = yn−1 = xn−j−1

...
...

...
...

...
xj−i+1 = yj+1 = x1

Thus we have x1x2 . . . xn−j = xj−i+1xj−i+2 . . . xn−i, as required.

Lemma 4.85. If x = x1x2 . . . xn has an (i, j)-shift, then Si(x) ⊆ Sj(x).

Proof. Reversing the argument from Lemma 4.84, we have that an (i, j)-shift
implies that

yi+1yi+2 . . . yn = x1x2 . . . xn−i.

Since there are no restrictions on y1y2 . . . yi, we see that any string that satisfies
these restrictions on yi+1yi+2 . . . yn is in both suffix classes. This describes all
strings in suffix class i, and hence we must have Si(x) ⊆ Sj(x).
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Combining the last two lemmas, we arrive at the more complete version.

Lemma 4.86. String x has an (i, j)-shift if and only if Si(x) ⊆ Sj(x).

Lemma 4.87. If x has no (i, j)-shifts, then

∣∣B−t (x)
∣∣ =

∣∣∣∣∣
t⋃
i=0

Si(x)

∣∣∣∣∣ =
t∑
i=0

di =
1− dt+1

1− d
.

Lemma 4.88. If x admits an (i, j)-shift, then there are di double-counted
strings in B−t (x).

Proof. By Lemma 4.87, if there are no (i, j)-shifts, then |B−t (x)| =
∑t
i=0 d

i. By
Lemma 4.86, there is a bijection between (i, j)-shifts and nested suffix classes
as follows.

(i, j) 7→ (Si(x),Sj(x))

In other words, each (i, j)-shift corresponds to every string in Si(x) also being
counted in Sj(x). Thus, for counting purposes, we have di double-counted
strings.

Lemma 4.89. If x admits an (i, j)-shift and a (j, k)-shift, then it admits an
(i, k)-shift.

Proof. By Lemma 4.86, an (i, j)-shift implies Si(x) ⊆ Sj(x), and a (j, k)-shift
implies Sj(x) ⊆ Sk(x). Hence we must also have Si(x) ⊆ Sk(x), which corre-
sponds to an (i, k)-shift.

Theorem 4.90.

∣∣B−t (x)
∣∣ =

(
t∑
i=0

di

)
−

 ∑
i∈[0,t−1]

∃(i,j)-shift for some j

di

 .

Proof. By Lemma 4.87, we start with the total number of strings (including
multiplicities) at

∑t
i=0 di. By Lemma 4.88, we need to subtract di when there

exists an (i, j)-shift, but only subtract once for each i. Thus we arrive at the
given formula.

4.4.3 Other Useful Functions and Matlab

In this section we present some de Bruijn functions that return many useful
parameters. Although the following functions are useful enough to warrant
their inclusion in this report, they do not, taken individually, justify their own
dedicated section. Therefore, we opted to present them all in this section. The
first of these useful functions that we present is one called GenerateNodes. This
function returns the string representation in the desired base.
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Algorithm 4 GenerateNodes: Generates all strings of length n and base d

1: procedure GenerateNodes(d, n)
2: N = dn

3: nodes = cell(1, n)
4: for i from 1 to N do
5: nodes{i} = dec2base(i− 1, d, n)
6: end for
7: end procedure
8: return nodes

Notice that in line 5 the MATLAB string library function dec2base(i−1, d, n)
is called. This is where the true work gets done in this function. This method
converts the value i−1 from a decimal number to one of base n. As an example
we executed GenerateNodes(3, 2) in MATLAB, and the output is provided
below.

ans = {00, 01, 02, 10, 11, 12, 20, 21, 22}

An alternative method for representing a graph, rather than in the vertex
and arc graph that has been used up until now in this report, is to use an
N–by–N matrix, where N is the number of vertices in the graph. For example
an adjacency matrix for a graph is used to represent which vertices in a graph
are adjacent to which other vertices. The code to produce an adjacency matrix
for ~B(d, n) follows.

Algorithm 5 AdjacencyMat: Generates Directed Adjacency Matrix

1: procedure AdjacencyMat(d, n)
2: N = dn

3: for i from 1 to N do
4: x = dec2base(i− 1, d, n)
5: for j from 0 to d− 1 do
6: y = strcat(x(2 : n),num2str(j))
7: z = base2dec(y, d)
8: A(i, z + 1) = 1
9: end for

10: end for
11: end procedure
12: return A

There are a few more MATLAB string library functions used in Adjacen-
cyMat. In line 4 we see the function dec2base(decimal, base, length) again. In
this case, the function converts decimal strings to a base system specified in the
third parameter. Function base2dec() in line 7 performs the opposite operation.
The function num2string(j) converts a number j into a string. The function
strcat(x, (2 : n)) is used to concatenate string x removing string positions 2 on-
ward to the tail. Essentially what this function does is revealed in line 8 where
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matrix A gets re–populated when adjacent nodes are found. That is, it visits
every row i placing a 1 at every column positioned z + 1 (N , the number of
nodes minus d, the degree) distance apart. When this method is executed using
the following command (as an example) in MATLAB “AdjacencyMat(2, 4)”,
the adjacency matrix in Table 4.1 is returned.

To read the MATLAB output for AdjacencyMat(2, 4) (in Table 4.1 above),
select a vertex string identifier (name) from the row label (highlighted blue)
and then scan across the row associated with the vertex. If a 1 appears in the
row then the vertex listed in the corresponding column label (also highlighted
blue) is adjacent to the vertex under consideration. By contrast, a 0 in the row
indicates that the vertex in the column label is not adjacent to the vertex under
consideration. From the standpoint of efficiency, AdjacencyMat is somewhat
wasteful. The structure of the nested for loops alone cause the function to
go cubic. In addition to this, the MATLAB functions that are called within
AdjacencyMat, such as strcat, num2str, and base2dec, undoubtedly come at a
cost as well.

Another matrix that can be used to represent a de Bruijn graph is a distance
matrix. Unlike an adjacency matrix, a distance matrix shows the distance from
every node to every other node in the graph. In our de Bruijn library of functions
there is a method to generate a directed distance matrix. The code follows.

Algorithm 6 DirectedDistanceMat: Generates Directed Distance Matrix

1: procedure DirectedDistanceMat(d, n)
2: N = dn

3: for i from 1 to N do
4: for j from 1 to N do
5: nodes(i, j) = DD((dec2base(i− 1, d, n)),(dec2base(j − 1, d, n)))
6: end for
7: end for
8: end procedure
9: return nodes

As you can see the function calls our library function DD(X,Y ) in line 5,
which computes the distance between two strings in the directed de Bruijn
graph. Once the node names are generated, DD(X,Y ) computes the distance
and populates the nodes array. After exiting the outer for loop, nodes is re-
turned. The cost of DirectedDistanceMat is at least quadratic in N , O(N2),
due to the nested for loops, and this cost does not take into account the called
library functions dec2base(). Since DD(d, n) is linear, it does not have much
of an effect on efficiency. We executed DirectedDistance(2,4) using MATLAB
which returned the following distance matrix in Table 4.2.

The undirected counterpart for DirectedDistanceMat in the DeBruijn library
is UndirectedDistanceMat.

About the only thing worth mentioning for this function is that the time
complexity and efficiency are very poor. This function calls UD(d, n) which
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Algorithm 7 UndirectedDistanceMat: Generates Undirected Dist. Mat.

1: procedure UndirectedDistanceMat(d, n)
2: N = dn

3: for i from 1 to N do
4: for j from 1 to N do
5: nodes(i, j) = UD((dec2base(i− 1, d, n)),(dec2base(j − 1, d, n)))
6: end for
7: end for
8: end procedure
9: return nodes

runs at O(n3) efficiency. Exacerbating an already inefficient function, Undi-
rectedDistanceMat() itself runs in O(N2) efficiency. This brings our efficiency
down to (O(n3) × O(N2)) = O(N3d2n). The distance matrix representing the
output for UndirectedDistanceMat(2, 4) is in Table 4.3.

As mentioned above, the reason AdjacencyMat (and the distance matrices)
is so inefficient is because of its nested loop structure. Looking at the returned
matrix in Table 4.1, one of the first things we notice is that the array is nearly
filled with zeros. This is because de Bruijn graphs are sparsely populated with
relatively few nodes when compared to their edges. The adjacency matrix goes
through a lot of work to produce a relatively small amount of useful information.
This next function, VectorNeighborGenerator returns the same useful informa-
tion without the superfluous generation and storage of useless data. Note that
this function omits the self-loops on nodes of the form an.

Running this method with the same parameters as AdjacencyMat(2, 4) in
the MATLAB command shell, we receive the following smaller data structure
in return.

VectorNeighborGenerator(2, 4) :

ans = {0000 : 0001, 0001 : 0010, 0001 : 0011, 0010 : 0100,

0010 : 0101, 0011 : 0110, 0011 : 0111, 0100 : 1000, 0100 : 1001,

0101 : 1010, 0101 : 1011, 0110 : 1010, 1100 : 1101, 0111 : 1110,

0111 : 1111, 1000 : 0000, 1000 : 0001, 1001 : 0010, 1001 : 0011,

1010 : 0100, 1010 : 0101, 1011 : 0110, 1011 : 0111, 1100 : 1000,

1100 : 1001, 1101 : 1010, 1101 : 1011, 1110 : 1100, 1110 : 1101,

1111 : 1110}

This function is an improvement over AdjacencyMat because it runs in linear
time complexity with respect to N (omitting any costs attributed from the called
function strcmp()). Another improvement is that it does not return any useless
values, and therefore instead of returning d2n values it only returns dn+1 − d
values. In the case of ~B(2, 4) above it returned 30 values instead of 256. This
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Algorithm 8 VectorNeighborGenerator: Linked list rep. of graph

1: procedure VectorNeighborGenerator(d, n)
2: N = dn

3: size = Nd− d
4: nodes = GenerateNodes(d, n)
5: edges = cell(1,size)
6: nNeighbor = 0
7: count = 1
8: currentNode = 1
9: for i from 1 to size+d do

10: nNeighbor = nNeighbor + 1
11: if nNeighbor > N then
12: nNeighbor = 1
13: end if
14: if ∼strcmp(nodes{currentNode}, nodes{nNeighbor}) then
15: edgescount – 1 =
16: strcat(nodes{currentNode}, char(‘:’), nodes{nNeighbor})
17: else
18: if count 6= 1 then
19: count = count – 1
20: end if
21: end if
22: if (mod(i, d) = 0) and (nNeighbor 6= 0) then
23: currentNode = currentNode + 1
24: end if
25: count = count + 1
26: end for
27: end procedure
28: return edges
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is an 88.3% improvement in efficiency. Tracing the code, note that the variable
size is instantiated to be Nd − d. This is the length of the return structure, a
linear cell array called edges.

Also note that in line 4 VectorNeighborGenerator makes use of our library
function GenerateNodes. It does this so that it may perform a string compar-
ison rather than a nested loop search approach. The function uses a couple of
variables currentNode to represent the current node under consideration and
nNeighbor. The variable nNeighbor gets assigned by following a programmed
route of nodes that are within the currentNode’s “reach” when calculating its
d –length hops. These hops follow a predictable path as illustrated below in
Figure 11.

Figure 11: Hops in ~B(3, 2)

Using currentNode and nNeighbor in tandem, the linear array nodes is tra-
versed, currentNode simply iterating in sequence while nNeighbor follows its
hopping route. In line 14 a negated comparison is made to ensure that they are
not equal, indicating a self–pointing node, and if this comparison fails then the
two nodes are assigned together as one slot in the edges cell array separated by
a colon (assignment done in line 15). After the loop counting variable reaches
i = size +d (in MATLAB array indices always start at 1) we exit the loop and
return edges, the populated cell array.

Generating Balls and Spheres

The last set of functions involve the generation of two very similar yet distinctly
different lists of nodes. The first is a function to generate a list of all nodes
within a prescribed distance from a given node. The de Bruijn library functions
for generating a set of all nodes contained in a t-ball follow.

An example of this function is given below.
DirectedBallFromX(1, 01, 3, 2) ans = {01, 10, 11, 12}
This function calls DirectedDistanceMat after which it parses the matrix

looking for nodes within the specified distance, t = 1 from a specified node X =
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Algorithm 9 DirectedBallFromX: Generates t-out ball from X

1: procedure DirectedBallFromX(t,X, d, n)
2: N = dn

3: j = 1
4: x = base2dec(X, d) + 1
5: nodes = cell(1)
6: B = DirectedDistanceMat(d, n)
7: for i from 1 to N do
8: if B(x, i) ≤ t then
9: nodes{j} = dec2base(i− 1, d, n)

10: j = j + 1
11: end if
12: end for
13: end procedure
14: return nodes

01 (line 8). When found, these nodes within t are converted to the desired base
and placed into the cell array, nodes for return. The cost of DirectedBallFromX
is quadratic with respect to N because DirectedDistanceMat is called within it.

The undirected counterpart function to DirectedBallFromX is called Undi-
rectedBallFromX. This function generates a list of nodes that are within a spec-
ified distance from a specified node also, but the list returned has twice as many
nodes in it since the graph is undirected. This function also calls its appropriate
distance matrix, UndirectedDistanceMat, to assess the distances between nodes.

Algorithm 10 UndirectedBallFromX: Generates t-ball from X

1: procedure UndirectedBallFromX(t,X, d, n)
2: N = dn

3: j = 1
4: x = base2dec(X, d) + 1
5: nodes = cell(1)
6: B = UndirectedDistanceMat(d, n)
7: for i from 1 to N do
8: if B(x, i) ≤ t then
9: nodes{j} = dec2base(i− 1, d, n)

10: j = j + 1
11: end if
12: end for
13: end procedure
14: return nodes

As expected UndirectedBallFromX requires O(N3N2) time efficiency be-
cause it calls UndirectedDistanceMat (which runs in O(N2) time). Although
UndirectedDistanceMat works well, it is not at all efficient.

Let us examine an application of an undirected de Bruijn graph where the
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function UndirectedBallFromX is utilized. Imagine a radio network modeled on
the undirected de Bruijn graph B(2, 4) where the repeater tower, represented
by node 1100 is experiencing interference. In order for our transmitter, node
0000, to reach our receiver, node 1111, we must find a repeater tower path that
avoids the defective tower. Executing the function UndirectedBallFromX(1100,
1, 2, 4) returns the list {0110, 1000, 1001, 1100, 1110}. By avoiding transmission
through these towers, a fault free route can be determined. The shortest path
is highlighted in green and it follows nodes {0001, 0011, 0111, 1111} (see Figure
12).

Figure 12: Radio network B(2, 4) showing avoidance of fault paths

The function DirectedAtFromX is similar to DirectedDFromX except that
instead of locating all nodes within a given distance, the function locates all
nodes at the designated distance. The set of all nodes at exactly distance t
from X is also known as a t-sphere centered at X.

An example of this function is given below.
DirectedAtFromX(1, 01, 3, 2) ans = {10, 11, 12}
This function calls DirectedDistanceMat after which it parses the matrix

looking for nodes at the specified distance, t = 1 from a specified node X=01
(line 8). When found, these nodes at t are converted to the desired base and
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Algorithm 11 DirectedAtFromX: Generates t-sphere from X

1: procedure DirectedAtFromX(t,X, d, n)
2: N = dn

3: j = 1
4: x = base2dec(X, d) + 1
5: nodes = cell(1)
6: B = DirectedDistanceMat(d, n)
7: for i from 1 to N do
8: if B(x, i) = t then
9: nodes{j} = dec2base(i− 1, d, n)

10: j = j + 1
11: end if
12: end for
13: end procedure
14: return nodes

placed into the cell array, nodes for return. Like DirectedBallFromX, the cost
of DirectedAtFromX is, quadratic time efficiency.

The undirected counterpart function to DirectedAtFromX is called Undi-
rectedAtFromX. This function generates a list of nodes that are at a specified
distance from a specified node also, but the list returned has more nodes in it
since the graph is undirected. This function also calls its appropriate distance
matrix, UndirectedDistanceMat, to assess the distances between nodes.

Returning to our radio tower scenario, where the tower configuration is mod-
eled after the de Bruijn network B(2, 4). This time, imagine that the transmitter
system underwent an upgrade and so now it is capable of propagating signals
at much higher power. Our function UndirectedAtFromX could be utilized to
determine broadcast range from the transmitter tower, node 0000. Let us say
we broadcast a signal at four discrete and incrementally higher power levels, 1
- 4. After each transmission, we pause and await confirmation of receipt from
the other towers in our network. After our first broadcast, at power level 1, we
receive notification from towers 0001, and 1000. After our broadcast at power
level 2 we receive confirmation from 0010, 0011, 0100, 1100 as well as those who
previously acknowledged. On power level number 3 we receive notification from
towers 0101, 0110, 0111, 1001, 1010, and , 1110 as well as all those who have pre-
viously acknowledged. Finally we broadcast at power level 4, and we receive
acknowledgement from towers 1011, 1101, and 1111 in addition to all other tow-
ers in the network (Refer to Figure 13).
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Figure 13: Radio Network B(2, 4) showing Broadcast Distance

4.5 Recursive Constructions

The standard, well-known recursive construction for the de Bruijn graph inducts
on the string length, n, while holding the alphabet size d fixed. This construction
illustrates the fact that ~B(d, n) is the line graph of ~B(d, n − 1). For a good
description, see [2].

Instead, we will focus on a new construction that increases the alphabet size
while holding the string length fixed. Our construction is as follows.

Construction 4.91. To construct B(d, n) from B(d−1, n), we do the following.

1. Make d+ 1 copies of B(d− 1, n) labeled “Copy i” for i ∈ {0, 1, 2, . . . , d}.

2. For each i ∈ {0, 1, 2, . . . , d− 1}, in Copy i we replace every occurrence of
letter i with letter d. Leave Copy d unaltered, i.e. Copy d = B(d− 1, n).

3. Combine all of the new copies to obtain B(d, n) as follows.

(a) New vertices: Any vertex containing the letter d, i.e. all strings of
length n with at least one d.

(b) New edges: New edges come from the copies as follows:

Copy 0: All edges containing d

Copy 1: All edges containing 0, d

Copy 2: All edges containing 0, 1, d
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Copy 3: All edges containing 0, 1, 2, d
...

Copy k: All edges containing 0, 1, 2, . . . , k − 1, d
...

Copy d− 1: All edges containing 0, 1, 2, . . . , d− 1, d

We now illustrate this construction to obtain B(4, 2) from B(3, 2). New edges
are colored. For each copy, we count how many new edges are added to ensure
that we have a total of 43 = 64 edges represented for B(4, 2). We will use the
principle of inclusion-exclusion to count the number of edges added.

Example:

Copy 3: Note that Copy 3 = B(3, 2).

Copy 3 00 01 02 10 11 12 20 21 22

00 2 1 1 1 0 0 1 0 0
01 1 0 0 2 1 1 1 0 0
02 1 0 0 1 0 0 2 1 1
10 1 2 1 0 1 0 0 1 0
11 0 1 0 1 2 1 0 1 0
12 0 1 0 0 1 0 1 2 1
20 1 1 2 0 0 1 0 0 1
21 0 0 1 1 1 2 0 0 1
22 0 0 1 0 0 1 1 1 2

New edges: 33 = 27.

Copy 0:
Copy 0 33 31 32 13 11 12 23 21 22

33 2 1 1 1 0 0 1 0 0
31 1 0 0 2 1 1 1 0 0
32 1 0 0 1 0 0 2 1 1
13 1 2 1 0 1 0 0 1 0
11 0 1 0 1 2 1 0 1 0
12 0 1 0 0 1 0 1 2 1
23 1 1 2 0 0 1 0 0 1
21 0 0 1 1 1 2 0 0 1
22 0 0 1 0 0 1 1 1 2

New edges:

Total edges: +33 27
- edges w/o 3: −23 −8

19
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Copy 1:
Copy 1 00 03 02 30 33 32 20 23 22

00 2 1 1 1 0 0 1 0 0
03 1 0 0 2 1 1 1 0 0
02 1 0 0 1 0 0 2 1 1
30 1 2 1 0 1 0 0 1 0
33 0 1 0 1 2 1 0 1 0
32 0 1 0 0 1 0 1 2 1
20 1 1 2 0 0 1 0 0 1
23 0 0 1 1 1 2 0 0 1
22 0 0 1 0 0 1 1 1 2

New edges:

Total edges: +33 27
- edges w/o 0: −23 −8
- edges w/o 3: −23 −8

+ edges w/o 0,3: +13 +1
12

Copy 2:
Copy 2 00 01 03 10 11 13 30 31 33

00 2 1 1 1 0 0 1 0 0
01 1 0 0 2 1 1 1 0 0
03 1 0 0 1 0 0 2 1 1
10 1 2 1 0 1 0 0 1 0
11 0 1 0 1 2 1 0 1 0
13 0 1 0 0 1 0 1 2 1
30 1 1 2 0 0 1 0 0 1
31 0 0 1 1 1 2 0 0 1
33 0 0 1 0 0 1 1 1 2

New edges:

Total edges: +33 27
- edges w/o 0: −23 −8
- edges w/o 1: −23 −8
- edges w/o 3: −23 −8

+ edges w/o 0,1: +13 +1
+ edges w/o 0,3: +13 +1
+ edges w/o 1,3: +13 +1

- edges w/o 0,1,3: −03 −0
6

This gives us a total of number edges: 27 + 19 + 12 + 6 = 64, as desired.
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Algorithm

We now wish to convert this process to an algorithm for a program such as
Matlab to generate B(d+ 1, n) from B(d, n). From our previous discussions and
examples, we know that we have the following new edges for each copy. We
will rename Copy d to Copy -1, and our motivation for this will be clear in the
subsequent counting formulas.

Copy -1: All (n+ 1)-strings on alphabet {0, 1, 2, . . . , d− 1}.
→ Add dn+1 edges.

Copy 0: All (n+ 1)-strings on alphabet {0, 1, 2, . . . , d−1, d}\{0} that contain
the letter d.

→ Add dn+1 −
(

1
1

)
(d− 1)n+1 edges.

Copy 1: All (n+ 1)-strings on alphabet {0, 1, 2, . . . , d−1, d}\{1} that contain
the letters 0, d.

→ Add dn+1 −
(

2
1

)
(d− 1)n+1 +

(
2
2

)
(d− 2)n+1 edges.

Copy 2: All (n+ 1)-strings on alphabet {0, 1, 2, . . . , d−1, d}\{2} that contain
the letters 0, 1, d.

→ Add dn+1 −
(

3
1

)
(d− 1)n+1 +

(
3
2

)
(d− 2)n+1 −

(
3
3

)
(d− 3)n+1 edges.

...

Copy k: All (n+ 1)-strings on alphabet {0, 1, 2, . . . , d−1, d}\{k} that contain
the letters 0, 1, 2, . . . , k − 1, d.

→ Add
∑k+1
i=0 (−1)i

(
k+1
i

)
(d− i)n+1 edges.

...

Copy d− 1: All (n+ 1)-strings on alphabet {0, 1, 2 . . . , d− 1, d} \ {d− 1} that
contain the letters 0, 1, 2, . . . , d− 2, d.

→ Add
∑d
i=0(−1)i

(
d
i

)
(d− i)n+1 edges.

This gives us that the total number of edges in B(d+ 1, n) is:

‖B(d+ 1, n)‖ =
d−1∑
k=−1

‖Copy k‖

=
d−1∑
k=−1

k+1∑
i=0

(−1)i
(
k + 1

i

)
(d− i)n+1

=
d∑
j=0

j∑
i=0

(−1)i
(
j

i

)
(d− i)n+1
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Note that this algorithm will never count strings that contain at least one
of every letter in the set {0, 1, 2, . . . , d}, and hence we must require that n < d.
So we have now developed the following combinatorial identity.

Theorem 4.92. For n < d,

(d+ 1)n+1 =
d∑
j=0

j∑
i=0

(−1)i
(
j

i

)
(d− i)n+1.

To address the cases where n ≥ d, we must count the number of (n + 1)-
strings on {0, 1, 2, . . . , d} in which each letter appears at least once. This is
equivalent to the number of onto functions from an (n+ 1)-set to a (d+ 1)-set.
It is a well-known result and a standard example of the Principle of Inclusion-
Exclusion (see [19] for a discussion of this principle) that this number of onto
functions is given by:

d+1∑
i=0

(−1)i
(
d+ 1

i

)
(d+ 1− i)n+1.

Thus we obtain the following result that covers all cases.

Theorem 4.93. For all n, d ∈ Z+:

(d+ 1)n+1 =

 d∑
j=0

j∑
i=0

(−1)i
(
j

i

)
(d− i)n+1


+

(
d+1∑
i=0

(−1)i
(
d+ 1

i

)
(d+ 1− i)n+1

)
.

Example

We now run through a complete example to construct B(3, 2) from B(2, 2).

Copy -1: We begin with the graph B(2, 2). See Figure 14.

00

01 10

11

Figure 14: Copy -1
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Copy 0: We add in a copy of B(2, 2) where the letter 0 is renamed 2. See
Figure 15 for Copy 0 and Figure 16 for the merged figure, with new edges
in red.

22

21 12

11

Figure 15: Copy 0

00

01 10

11

21

22

12

Figure 16: Merged Copy -1 and Copy 0

Copy 1: We add in a copy of B(2, 2) where the letter 1 is renamed 2. See
Figure 17 with new edges in blue.

00

01 10

11

21

22

12

02

20

Figure 17: Merged Copy -1, Copy 0, and Copy 1

64

Approved for Public Release; Distribution Unlimited.



Additional: Since n ≥ d, we must additionally consider all 3-strings that con-
tain every letter from {0, 1, 2} at least once. Note that this is the set of
all permutations of {0, 1, 2}, so we add in the following edges.

{012, 021, 102, 120, 201, 210}

See Figure 18 with new edges in green.

00

01 10

11

21

22

12

02

20

Figure 18: Merged Copy -1, Copy 0, Copy 1, and additional edges

4.6 Identifying Code Problem Formulations

As an NP-complete problem, computing base cases for the minimum identifying
code problem is quite challenging. In this chapter, we explore various methods
utilized to compute base cases around which to develop conjectures.

4.6.1 Parallel Computing

The pseudocode in Algorithm 12 describes our brute force algorithm, imple-
mented in Matlab using the Parallel Computing Toolbox.

Algorithm 12 Brute Force Algorithm

1: procedure BruteForce(d, n, k) . B(d, n) and subset size k
2: Create list of all subsets of k nodes
3: for i = 1 :

(
dn

k

)
do

4: if subset i is a valid identifying code then
5: Display subset i to user
6: else
7: Do nothing
8: end if
9: end for

10: end procedure
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Parallelizing our algorithm takes two steps. The first step is to replace
“For” on line 3 with “Parfor”. This indicates to Matlab to use the parallel
computing toolbox and run each loop iteration independently. The second step
requires moving the construction of subsets inside the Parfor loop. Because of
the exponential increase in the number of subsets created, it is more efficient
to generate each subset within the loop and discard it after the iteration than
to store all

(
dn

k

)
k-subsets and traverse through the list. This is done using a

k-subset unranking algorithm. Two of these algorithms (from [16]) are listed
as Algorithms 13 and 14. These unranking functions allow us to completely
parallelize the brute force algorithm, and the results obtained are listed in Figure
19.

Algorithm 13 Revolving Door Unranking Algorithm

1: procedure RevDoor(r, k, n) . subset index, subset size, set size
2: x = n
3: for i = k : 1 do
4: while

(
x
i

)
> r do

5: x = x− 1
6: end while
7: ti = x+ 1
8: r =

(
x+1
i

)
− r − 1

9: end for
10: end procedure
11: return T = (t1, t2, . . . , tk)

Algorithm 14 Lexicographic Unranking Algorithm

1: procedure LexUnrank(r, k, n) . subset index, subset size, set size
2: x = 1
3: for i = 1 : k do
4: while r ≥

(
n−x
k−i
)

do

5: r = r −
(
n−x
k−i
)

6: x = x+ 1
7: end while
8: ti = x
9: x = x+ 1

10: end for
11: end procedure
12: return T = (t1, t2, . . . , tk)

4.6.2 D-Wave Quantum Annealing Machine

Under the collaborative effort “Adiabatic Quantum Computing Applications
Research” (14-RI-CRADA-02) between the Information Directorate and Lock-
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d \ n 2 3 4 5
2 × 4 6 12
3 4 9
4 5
5 6

Figure 19: Results for B(d, n) obtained using HPC

heed Martin Corporation, we aim to extend the results obtained by the parallel
computing method. In general, the D-Wave machine can address a class of Ising
problems natively by the hardware. As stated in the D-Wave user documents,
“The D-Wave hardware can be viewed as a hardware heuristic which minimizes
Ising objective functions using a physically realized version of quantum anneal-
ing.” [9] The Ising model is an energy minimization problem of -1/+1-valued
variables. It can be converted to a quadratic unconstrained binary optimization
(QUBO) problem that uses 0/1-valued variables, and so they are often used
interchangeably.

Binary Optimization Model

We present a binary optimization formula for the 1-identifying code problem.
Adjustments must be made to create a quadratic version. We will define this
model using three separate functions: one to show that the set has the correct
size, one to show that the set is dominating, and one to show that the set is
separating (or identifying).

Variable Definitions

We will use the notation B(v) for v ∈ V (G), where B(v) = N(v)∪{v}. In other
words, B(v) is the set containing all vertices adjacent to v, plus v itself.

We define the variables as follows.

xvi =

{
1, if i ∈ B(v);
0, otherwise.

Set S has size k

We define the first function, HA, as follows.

HA = (k −
∑
v xvv)

= 0 iff |S| = k.

Set S is a dominating set

By definition, this is equal to ∀v ∈ G, B(v) ∩ S 6= ∅ This is equivalent to
the following.
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∀v ∈ G,B(v) ∩ S 6= ∅ ↔ (xvv = 1) ∨

(∑
uv∈E

xuv ≥ 1

)

↔ (1− xvv = 0) ∨ ¬

(∑
uv∈E

xuv = 0

)

↔ (1− xvv = 0) ∨

( ∏
uv∈E

(1− xuv) = 0

)

From this statement, we get the following equation for our second function.

HB =
∑
v(1− xvv) ·

(∏
uv∈E(1− xuv)

)
Set S is a separating set

By definition, this is equal to ∀x, y ∈ G, (B(x) ∩ S)4(B(y) ∩ S) 6= ∅. This
is equivalent to the following for a specific pair x 6= y.

(B(x) ∩ S)4(B(y) ∩ S) 6= ∅ ↔ ∃v ∈ (B(x) ∩ S)4(B(y) ∩ S)

↔ ∃v, (v ∈ B(x) ∩ S)⊕ (v ∈ B(y) ∩ S)

↔ ∃v, (xxv = 1)⊕ (xyv = 1)

↔ ∃v, (1− (xxv + xyv) = 0)

↔
∏
v

(1− xxv − xyv) = 0

From this statement, we get the following equation for our third function,
summed over all pairs x, y.

HC =
∑
x

∑
y 6=x

∏
v(1− xxv − xyv)2

The Binary Optimization Model

From these three functions, our binary optimization model is the following.

H(S) = HA(S) +HB(S) +HC(S)
= 0 iff S is an identifying code.

Note that while this does provide a binary optimization model for our prob-
lem, it is not quadratic. In order to convertH(S) to a quadratic binary equation,
each higher order term must be replaced with several new variables. While this
is possible, it is a time-consuming and arduous process that introduces many
new variables. Hence this approach will likely not be the most efficient imple-
mentation.
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Integer Program Formulation

From [20], we have the following integer program formulation of the minimum
identifying code problem in directed graphs.

First, we define the modified adjacency matrix as follows. It is the
adjacency matrix plus the identity matrix.

Aij =

{
1, if (i, j) ∈ E or i = j;
0, otherwise.

Using this definition, we see that a ball of radius 1 surrounding vertex i is
given by the following vector.

B(i) = [A1i, A2i, . . . , Ani]
T

Our vertex subset S is defined as the following vector.

S = [s1, s2, . . . , sn]T where si =

{
1, if i ∈ S;
0, otherwise.

To compare two identifying sets with respect to S for vertices i and j, the
following expression computes the size of (B(i) ∩ S)4(B(j) ∩ S).

n∑
k=1

|Aki −Akj | · sk

This implies that in order for S to be a valid 1-identifying code, we must
have the following inequality satisfied for all pairs of vertices i and j.

n∑
k=1

|Aki −Akj | · sk ≥ 1

For the dominating property to be satisfied, we require the following addi-
tional inequality.

A · S ≥ 1T

Thus our integer program is given by the following.

min |S|
s.t.

∑n
k=1 |Aki −Akj | · sk ≥ 1, ∀i 6= j

A · S ≥ 1T

sk ∈ {0, 1}

In order to use these ideas for the D-Wave machine, our constraints must be
equalities. This means we must add binary slack variables for each inequality.
For the first set of inequalities, we must determine an upper bound for each
inequality. Since these correspond to the constraint |(B(i)∩S)4(B(j)∩S)| ≥ 1,
an easy upper bound is given by the following.

|B(i)|+ |B(j)| ≥ |(B(i) ∩ S)4(B(j) ∩ S)| ≥ 1
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For the class of de Bruijn graphs, we are able to use this to get a bound on the
number of slack variables needed. Since the maximum size of any ball in B(d, n)
is 2d + 1, this gives us an upper bound of size 4d + 2 for this class of graphs.
Hence for each inequality in this set, we must add 4d+ 2 binary slack variables

to convert the inequality to an equality. Since there are dn(dn−1)
2 possible pairs

i, j, this implies that we must add a huge number of binary slack variables, equal
to the following expression, just to satisfy the first set of inequalities.

dn(dn − 1)(2d+ 1) slack variables

Hence, this method is not going to be an efficient way to map our problem onto
the D-Wave machine.

Satisfiability Formulation

This approach formulates the identifying code problem as a boolean satisfiability
problem. Each term in the satisfiability problem is mapped to an Ising model.
The mapping introduces auxiliary variables so that the Ising model contains
only quadratic and linear terms. A graph embedding technique is then used to
map this Ising model onto the connectivity of the D-Wave chip. Finally, gauge
transformations are used to mitigate the effects of intrinsic control errors. We
will illustrate each step with an example of B(d, n) when d = 2 and n = 3. As
stated previously, these methods easily apply to any graph.

Satisfiability Formulation

First, we label the nodes of B(2, 3) from 0 to dn − 1 = 7. Then we define
the set of variables {xi} for i = 0, 1, . . . , 7 as follows.

xi =

{
1, if node i is included in the identifying code;
0, otherwise.

Next, we look at the ball for each node and form clauses corresponding to
their domination constraints.

Ball Contents Constraints
B(0) = B(000) {000, 001, 100} = {0, 1, 4} x0 ∨ x1 ∨ x4

B(1) = B(001) {000, 001, 010, 011, 100} = {0, 1, 2, 3, 4} x0 ∨ x1 ∨ x2 ∨ x3 ∨ v4
B(2) = B(010) {001, 010, 100, 101} = {1, 2, 4, 5} x1 ∨ x2 ∨ x4 ∨ x5

B(3) = B(011) {001, 011, 101, 110, 111} = {1, 3, 5, 6, 7} x1 ∨ x3 ∨ x5 ∨ x6 ∨ x7

B(4) = B(100) {000, 001, 010, 100, 110} = {0, 1, 2, 4, 6} x0 ∨ x1 ∨ x2 ∨ x4 ∨ x6

B(5) = B(101) {010, 011, 101, 110} = {2, 3, 5, 6} x2 ∨ x3 ∨ x5 ∨ x6

B(6) = B(110) {011, 100, 101, 110, 111} = {3, 4, 5, 6, 7} x3 ∨ x4 ∨ x5 ∨ x6 ∨ x7

B(7) = B(111) {011, 110, 111} = {3, 6, 7} x3 ∨ x6 ∨ x7

From this set of constraints, we form clauses for each pairwise XOR of balls.
This is shown in Figure 20

Now we can eliminate more specific clauses that are implied by more general
clauses. For example, Figure 21 shows which two-term constraints imply the
corresponding larger constraints. Hence, the only constraints that we have left
are given below.
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x2 ∨ x3

x0 ∨ x2 ∨ x5

x2 ∨ x6

x0 ∨ x3 ∨ x5

x3 ∨ x6

x0 ∨ x5 ∨ x6

x1 ∨ x2 ∨ x7

x1 ∨ x4

x1 ∨ x5

x2 ∨ x4 ∨ x7

x2 ∨ x5 ∨ x7

x4 ∨ x5

Satisfying this set of constraints are the four possible minimum solutions,
given below.

{x1, x2, x3, x5}
{x1, x2, x5, x6}
{x2, x3, x4, x5}
{x2, x4, x5, x6}

Mapping Satisfiability Clauses to Ising Models

We construct a Hamiltonian

H =
∑
j

Hj({xi, i ∈ Aj}) + λ
∑
i

xi.

Each of the terms has the property that

x∗ = arg min
xi

Hj({xi, i ∈ Aj}) iff

 ∨
i∈Aj

xi is true

 .

We will show momentarily how the Hj are constructed. The last term λ > 0
is a penalty term that rewards shorter length codes. Therefore, the minimum
solutions (or ground states) of H are the minimum 1-identifying codes.

In order to solve the Hamiltonian using adiabatic quantum optimization,
we have the further constraint that the Hj must contain only quadratic and
linear terms in the binary variables {xi}. In general to accomplish this, we
must introduce auxiliary variables, which we will denote by {zi}. Also, we will
switch to the Ising model convention where each of the xi and zi can take values
{+1,−1} instead of {0, 1}.

The mapping from OR-clauses to Ising models that we will use, namely∨
i∈Aj

xi 7→ Hj({xi, i ∈ A}),
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depends only on the number of variables k = |Aj | in the OR-clause. These
mappings for k = 2 through k = 6 are represented diagrammatically in Figure
22.

In the diagrams, numbers attached to a node represent the linear coefficients
in the Ising model, while numbers attached to an edge represent the quadratic
(coupling) coefficients in the Ising model. For example, the diagram for k = 3
represents the following Ising model.

H3(x1, x2, x3, z1) = x1x2 − 2x1z1 − 2x2z1 − 2x2z1 + z1x3 + x1 + x2 − 3z1 − x3

It can be confirmed that every ground state of H3(x1, x2, x3, z1) satisfies
x1 ∨ x2 ∨ x3, and conversely every combination of {x1, x2, x3} that satisfies
x1 ∨ x2 ∨ x3 corresponds to a ground state of H3(x1, x2, x3, z1).

Mapping the Ising model onto the D-Wave processor

In general, the graph of the Hamiltonian we get from the satisfiability-to-Ising
mapping will not fit onto the D-Wave hardware graph. The D-Wave hardware
graph, which is called the “Chimera” graph, is built up of unit cells, each of
which is a four by four bipartite graph, K4,4. Even the simple Ising model for
3-OR shown in Figure 22 cannot be mapped directly onto the D-Wave hardware
graph. This can be seen from the fact that our graph B(2, 3) contains a 3-cycle,
whereas the smallest cycle possible on the D-Wave hardware graph is a 4-cycle.

Embedding

Our first step to embedding is to determine how to map our OR-clauses
to the physical qubits. One way to embed the 3-OR graph onto the D-Wave
is shown in Figure 23. We have mapped the logical qubit z1 to two physical
qubits, which are ferromagnetically coupled with a coupling strength -JFm.

Similarly, once we constructed the full Ising Hamiltonian for the minimum
1-independent code problem, we can use embedding to map the graph of the
Hamiltonian onto the D-Wave hardware graph.

Problem Decomposition

If the graph of the Hamiltonian is too large to embed onto our current
504-qubit D-Wave hardware graph, one trick we can try is to decompose the
satisfiability problem into smaller pieces that can be embedded. For example,
in the B(2, 3) example from earlier, one of the terms is x2 ∨x3. In order for this
to be true, at least one of x2 and x3 must be true. We consider and solve each
case separately.

If x2 is true, then so is any OR-clause containing x2, so we can eliminate
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x1+1

−2
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+1

-JFm
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Figure 23: Embedding 3-OR onto the Chimera Graph

those from the conjunction. We are left with the following clauses.

x3 ∨ x6

x0 ∨ x5 ∨ x6

x1 ∨ x4

x1 ∨ x5

x4 ∨ x5

Similarly, in the case where x3 is true we can eliminate terms containing x3,
leaving the following clauses.

x2 ∨ x6

x0 ∨ x5 ∨ x6

x1 ∨ x2 ∨ x7

x1 ∨ x4

x1 ∨ x5

x2 ∨ x4 ∨ x7

x2 ∨ x5 ∨ x7

x4 ∨ x5

Both of these subproblems are simpler than the original problem and hence
easier to embed. Whichever subproblem yields the smaller identifying codes will
be the solution of our original problem, or if both subproblems have minimum
solutions of the same length, then we can take the union of the two solution
sets.

Gauge Transformations

Embedding complex graphs leads to long chains, i.e. multiple physical qubits
corresponding to the same logical qubit. In the current D-Wave embedding
solver, all of the physical qubits in a chain will be ferromagnetically coupled
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Figure 24: Example Gauge Transformation

with some coupling strength -JFm, which is iteratively increased to a large
enough magnitude to ensure that all of the physical qubits in the chain agree
(most of the time) and can be treated as a single logical qubit.

However, due to the characteristics of the D-Wave design, the control pre-
cision for implementing ferromagnetic couplings is somewhat worse than for
antiferromagnetic couplings. So, embeddings with many long chains will have a
greater tendency for control precision errors which may affect solution quality.
To combat these effects, we can utilize a gauge transformation, where we rede-
fine a subset of the spin variables to be the opposite sign. Flipping a subset of
the spins in this way induces a transformation on the Ising coefficients: If S1 has
been flipped (S′1 = −S1), then h′1 = −h1. If one of S1 and S2 has been flipped,
then J ′12 = −J12. But if both of S1 and S2 have been flipped, then J ′12 = J12.

Consider for example the gauge transformation shown in Figure 24. In the
figure, the red qubits are flipped by the gauge transformation while the blue
qubits are unchanged. In the first unit cell, all of the horizontal qubits are flipped
while the vertical qubits are unchanged. In the next unit cell, all of the vertical
qubits are flipped while the horizontal qubits are unchanged. So, suppose our
embedding contains the chain 1 (blue vertical qubit), 5 (red horizontal qubit), 13
(blue horizontal qubit). Note that each consecutive pair in the chain contains
exactly one flipped qubit, so all of the ferromagnetic couplings -JFm in the
chain will be replaced with antiferromagnetic couplings +JFm by the gauge
transformation. By using gauge transformations like this, we may be able to
reduce the control precision errors caused by embeddings with long chains.

Results for B(2, 4)

By combining all of the above tricks, we obtained results for the minimum
identifying code problem on the d = 2, n = 4 undirected de Bruijn graph on the
D-Wave hardware.
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SAT formulation

Figure 25 shows the full satisfiability formulation of the 1-identifying code
for B(2, 4). This code was generated using a Matlab function written by Steve
Adachi. It contains 50 clauses over 16 variables.

Problem Decomposition

For the full satisfiability formulation in Figure 25, the Ising model was too
large to embed on the current D-Wave hardware graphs. The problem must be
decomposed further. Note that two of the terms are x3∨x11 and x4∨x12. Thus,
at least one of x3 and x11 must be true, and at least one of x4 and x12 must be
true. Considering the branch where x3 and x4 are true, the satisfiability prob-
lem reduces to the problem shown in Figure 26. This decomposed formulation
consists of just 24 clauses over 14 variables.

Satisfiability clause to Ising model mapping

Using the Ising model mappings shown in Figure 22, we generated an Ising
model with 49 auxiliary variables {zi} for a total of 63 variables. We furthermore
added the penalty term λ

∑
i xi so that the ground state will be a minimum 1-

identifying code. Note that this is far better than the 1200+ auxiliary (slack)
variables required in the integer program formulation for this case.

Figure 27 shows the logical graph of the Ising model. In the figure, nodes cor-
responding to the original 14 boolean variables are shown in green; the remaining
nodes represent the auxiliary variables added during the satisfiability-to-Ising
mapping process.

Embedding

Using the D-Wave embedding function sapiFindEmbedding(), we found an
embedding of the Ising model onto the current (504-qubit) hardware graph for
the Lockheed-Martin D-Wave machine that uses 253 physical qubits, with a
maximum chain length of 8. This is shown in Figure 28.

In Figure 28, physical qubits corresponding to the same logical qubit have
the same color and are labeled with the same number. The unlabeled red qubits
are known faulty qubits and are not used.

Gauge Transformations

Since we have an exact solution from the parallel computing method on the
graph B(2, 4), we know that the x3 = x4 = 1 branch of the problem should have
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( x2 v x3 )

( x0 v x2 v x4 v x5 v x8 v x9 )

( x0 v x3 v x6 v x7 v x8 v x9 )

( x0 v x1 v x2 v x4 v x9 v x10 )

( x4 v x12 )

( x0 v x1 v x6 v x9 v x12 v x14 )

( x0 v x3 v x4 v x5 v x8 v x9 )

( x0 v x2 v x6 v x7 v x8 v x9 )

( x0 v x1 v x3 v x4 v x9 v x10 )

( x1 v x5 v x8 v x10 )

( x1 v x4 v x9 v x10 v x11 )

( x0 v x2 v x5 v x8 v x9 v x12 )

( x1 v x3 v x5 v x12 )

( x1 v x2 v x9 v x10 v x13 )

( x1 v x6 v x9 v x11 v x14 v x15 )

( x1 v x3 v x7 v x8 v x12 v x14 )

( x1 v x3 v x6 v x9 v x14 v x15 )

( x4 v x5 v x8 v x9 v x11 )

( x0 v x1 v x2 v x9 v x10 v x12 )

( x3 v x8 v x10 v x12 )

( x2 v x5 v x8 v x9 v x13 )

( x2 v x4 v x11 v x13 )

( x2 v x6 v x7 v x10 v x13 )

( x2 v x5 v x6 v x13 v x14 )

( x3 v x5 v x7 v x12 )

( x3 v x10 v x12 v x14 )

( x3 v x5 v x6 v x13 v x14 v x15 )

( x3 v x6 v x7 v x10 v x13 v x15 )

( x3 v x11 )

( x0 v x1 v x4 v x6 v x9 v x14 )

( x4 v x6 v x7 v x10 v x11 )

( x4 v x5 v x6 v x11 v x14 )

( x5 v x7 v x10 v x14 )

( x5 v x6 v x11 v x12 v x14 v x15 )

( x5 v x6 v x11 v x13 v x14 v x15 )

( x6 v x7 v x8 v x9 v x13 v x15 )

( x6 v x7 v x8 v x9 v x12 v x15 )

( x6 v x7 v x10 v x11 v x12 v x15 )

( x6 v x7 v x10 v x11 v x13 v x15 )

( x12 v x13 )

( x0 v x1 v x8 )

( x1 v x2 v x4 v x5 v x9 )

( x1 v x3 v x6 v x7 v x9 )

( x2 v x4 v x8 v x9 v x10 )

( x2 v x5 v x10 v x11 )

( x4 v x5 v x10 v x13 )

( x5 v x6 v x7 v x11 v x13 )

( x6 v x8 v x9 v x12 v x14 )

( x6 v x10 v x11 v x13 v x14 )

( x7 v x14 v x15 )

Figure 25: Satisfiability Formulation for B(2, 4)
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( x0 v x1 v x6 v x9 v x12 v x14 )

( x0 v x2 v x6 v x7 v x8 v x9 )

( x1 v x5 v x8 v x10 )

( x0 v x2 v x5 v x8 v x9 v x12 )

( x1 v x2 v x9 v x10 v x13 )

( x1 v x6 v x9 v x11 v x14 v x15 )

( x0 v x1 v x2 v x9 v x10 v x12 )

( x2 v x5 v x8 v x9 v x13 )

( x2 v x6 v x7 v x10 v x13 )

( x2 v x5 v x6 v x13 v x14 )

( x5 v x7 v x10 v x14 )

( x5 v x6 v x11 v x12 v x14 v x15 )

( x5 v x6 v x11 v x13 v x14 v x15 )
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( x6 v x7 v x8 v x9 v x12 v x15 )
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( x6 v x7 v x10 v x11 v x13 v x15 )

( x12 v x13 )

( x0 v x1 v x8 )

( x2 v x5 v x10 v x11 )

( x5 v x6 v x7 v x11 v x13 )

( x6 v x8 v x9 v x12 v x14 )

( x6 v x10 v x11 v x13 v x14 )

( x7 v x14 v x15 )

Figure 26: Decomposed Satisfiability Formulation for x3, x4 true.

Figure 27: Logical graph of the Ising model
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Figure 28: Embedding the problem onto the D-Wave hardware
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a ground state with the remaining variables

x8 = x10 = x13 = x14 = 1

corresponding to the minimum code length of 6. However, using the standard
D-Wave embedding solver (which does not yet support gauge transformations
- it uses all ferromagnetic couplings for the chains), we were not able to find
this ground state. Even using the maximum allowed combinations of D-Wave
function parameters annealing time and num reads (the number of annealing
runs per call), the best that we could obtain were solutions corresponding to a
code length of 7.

On the other hand, using a homegrown equivalent of the embedding solver,
which also has the capability to incorporate gauge transformations, we were
able to find the above ground state corresponding to a code of length 6.

4.6.3 Satisfiability Modulo Theory Solvers

Satisfiability Modulo Theory (SMT) is a current area of research that is con-
cerned with the satisfiability of formulas with respect to some background theory
[3]. These solvers combine boolean satisfiability solving with decision procedures
for specific theories. For example, consider the following problem.

a = b+ 1, c > a, c < b

In the theory of the integers, this problem is not satisfiable, however in the
theory of the real numbers it is satisfiable. In general, solving an SMT problem
consists of first solving a satisfiability problem, then doing theory-specific rea-
soning, and then possibly going back and changing the satisfiability problem.
This process is repeated if necessary. In addition, multiple theories can also
be used in the same satisfiability modulo theory problem instance, which may
require additional repeats of this method.

To use these solvers on our identifying code problem for the undirected de
Bruijn graph, we must first come up with a formulation of the problem using
decision procedures. The graph B(d, n), contains dn nodes. For each of these,
we create a boolean variable that denotes whether or not the node is part of
the identifying code. We then also create an array of boolean variables for that
node’s identifying set. An assertion is added to make sure that each element of
the array is true if and only if the corresponding neighbor’s boolean variable is
true (i.e. if and only if the neighbor is part of the identifying code). To ensure
unique codes, we add a statement to require that each node’s identifying set is
unique from every other node’s identifying set. Then, to get codes of a fixed
size, we create an integer variable for each node and add the constraints that the
integer is at least 0 and no greater than 1. Next we add an assertion that each
node’s integer variable is 1 if and only if its boolean variable is true. Finally,
we add a constraint that the sum of all of the integer variables is equal to the
desired identifying code size.
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d \ n 2 3 4 5 6 7
2 × 4 6 12 (24) (110)
3 4 9
4 5 15
5 6
6 8
7 9
8 (10)

Figure 29: Minimum 1-identifying codes on B(d, n)

Now that the formulation of the problem has been determined, we can use a
commercial solver to find solutions. For this work, we used the solver Z3, made
by Microsoft Research. We begin by first picking a code length, and asking
if there exists an identifying code of that length. If not, then the code length
is increased by 1 and the problem is posed to Z3 again. This continues until
an identifying code of a specific size is found. To find all satisfying models,
after a single model was found an assertion is inserted into the formulation
that requires that the the previously found identifying code be eliminated as
an option. This forces Z3 to produce a different solution, or to state that the
formulation is unsatisfiable (and hence no more identifying codes of that size
exist). This process is repeated in a loop to obtain all identifying codes.

Using this approach on a single core, we were able to reproduce our results
for B(d, n) from the parallel computing method in much less time. See Figure
29 for a summary of these results. The numbers in parentheses denote that we
found a code of that size, but did not eliminate the possibility of a smaller code
existing.

Because of the advancements in current satisfiability and satisfiability mod-
ulo theory solvers, they offer the potential to scale much better than a paral-
lelized brute force approach. This is due in part to the fact that many of today’s
solvers are capable of realizing which subsets of assignments will define an un-
satisfiable result, and hence they will avoid models in which those statements
are set. In our problem, this might correspond to a case in which nodes A and B
have the same identifying set. In this case, the solver would not bother looking
at combinations of True/False assignments on the other nodes that do not affect
the identifying sets of A or B.

In addition to the sophistication of today’s solvers, there is also the possi-
bility of parallelizing the search. While some instances were run manually in
a parallel manner for this experiment, there is some research to be done on
automatically parallelizing the search in order to further our known minimum
results.
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4.7 Minimum Identifying Code Examples

In this appendix, we give examples of some minimum identifying codes on de
Bruijn networks. These identifying codes allow a vertex to be identified by the
empty set.

4.7.1 Size of Minimum Identifying Codes

B(d, n) 2 3 4 5
2 × 4 6 12
3 4 8
4 4
5 6

4.7.2 Number of Minimum Identifying Codes

B(d, n) 2 3 4 5
2 × 4 44 1694
3 3 156
4 36
5 500

4.7.3 Complete Sets of Min. Identifying Codes

B(2, 2): Since {01, 10} are twin vertices, no identifying code is possible.

B(3, 2): The minimum identifying codes have size 4.

• {01, 02, 10, 20}
• {01, 10, 12, 21}
• {02, 12, 20, 21}

B(4, 2): The minimum identifying codes have size 4.

• {01, 02, 10, 20}
• {01, 02, 10, 30}
• {01, 02, 20, 30}
• {01, 03, 10, 20}
• {01, 03, 10, 30}
• {01, 03, 20, 30}
• {01, 10, 12, 21}
• {01, 10, 12, 31}
• {01, 10, 13, 21}
• {01, 10, 13, 31}
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• {01, 12, 13, 21}
• {01, 12, 13, 31}
• {02, 03, 10, 20}
• {02, 03, 10, 30}
• {02, 03, 20, 30}
• {02, 12, 20, 21}
• {02, 12, 20, 23}
• {02, 12, 21, 23}
• {02, 20, 21, 32}
• {02, 20, 23, 32}
• {02, 21, 23, 32}
• {03, 13, 30, 31}
• {03, 13, 30, 32}
• {03, 13, 31, 32}
• {03, 23, 30, 31}
• {03, 23, 30, 32}
• {03, 23, 31, 32}
• {10, 12, 21, 31}
• {10, 13, 21, 31}
• {12, 13, 21, 31}
• {12, 20, 21, 32}
• {12, 20, 23, 32}
• {12, 21, 23, 32}
• {13, 23, 30, 31}
• {13, 23, 30, 32}
• {13, 23, 31, 32}

B(2, 3): The minimum identifying codes have size 4.

• {001, 010, 011, 101}
• {001, 010, 101, 110}
• {010, 011, 100, 101}
• {010, 100, 101, 110}
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Conclusion

At the conclusion of this effort we have obtained new results, bounds, and algo-
rithms for t-identifying codes on ~B(d, n), however there is still room for improve-
ment. In particular, the problem of finding t-identifying codes in the undirected
de Bruijn graphs remains an open and challenging problem of interest.

For future efforts, we suggest the following two avenues. First, we aim to
continue analyzing de Bruijn graphs and their internal structures that have
proven useful in many applications. This includes continuation of our current
exploration of identifying codes and expanding to consider other related graph
structures, such as robust identifying codes that are resilient against node and
link failure. We will continue our quest for constructions of optimal identifying
codes in the undirected de Bruijn networks as well as consider approximation
algorithms. This will include examining existing algorithms for identifying codes
and modifying the methods to take advantage of the de Bruijn graph properties.
Additional key vertex subsets will also be considered, such as resolving sets and
locating dominating sets.

Our second research direction will be to consider variations on de Bruijn net-
works and perform similar analyses. Traditional de Bruijn networks are based
on strings over a fixed alphabet, and variations that have yet to be examined are
based on different combinatorial objects such as permutations. A different vari-
ation on de Bruijn networks, known as alphabet overlap graphs, provide a much
denser, more highly connected variant of the de Bruijn graph. These graphs
are relative newcomers to the academic arena, so a complete analysis of their
structural properties is needed to determine their relevance and applicability to
real-world networks.
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